AlCu4SiMg合金的动态再结晶体积分数模型构建及其在有限元模型中的应用(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling of dynamic recrystallization volume fraction evolution for AlCu4SiMg alloy and its application in FEM
  • 作者:权国政 ; 施瑞菊 ; 赵江 ; 刘乔 ; 熊威 ; 邱慧敏
  • 英文作者:Guo-zheng QUAN;Rui-ju SHI;Jiang ZHAO;Qiao LIU;Wei XIONG;Hui-min QIU;State Key Laboratory of Mechanical Transmission,School of Material Science and Engineering, Chongqing University;Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education,Tsinghua University;
  • 关键词:AlCu4SiMg合金 ; DRX动力学模型 ; DRX体积分数 ; 流变行为
  • 英文关键词:AlCu4SiMg alloy;;DRX kinetics model;;DRX volume fraction;;flow behavior
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:重庆大学材料科学与工程学院机械传动国家重点实验室;清华大学核能与新能源技术研究院先进核能技术协同创新中心先进反应堆工程与安全教育部重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(cstc2016jcyjA0335)supported by Chongqing Foundation and Frontier Research,China;; Project(P2017-020)supported by Open Fund Project of State Key Laboratory of Materials Processing and Die&Mould Technology,China
  • 语种:英文;
  • 页:ZYSY201906003
  • 页数:14
  • CN:06
  • ISSN:43-1239/TG
  • 分类号:27-40
摘要
为了更好地剖析AlCu4SiMg合金的动态再结晶(DRX)行为和流变行为的耦合效应,实施了具有DRX演变模型的有限元模拟。利用Gleeble-3500热模拟试验机,在温度为648~748K,应变速率为0.01~10s~(-1)的变形条件下对该合金进行等温压缩实验。依据实验所得的真实应力-应变数据,拟合应变硬化率曲线(表征dσ/dε与σ之间的关系),并识别产生动态再结晶时的临界应变值(ε_c)。通过对材料参数的求解,确定DRX的体积分数方程和DRX达到50%时的应变方程。构建DRX体积分数演变的有限元(FE)模型,对一系列等温压缩实验进行模拟仿真。DRX体积分数演变可视化结果显示:在同一应变速率条件下,达到相同DRX体积分数的应变量随温度的降低而增加;在同一温度条件下,该应变量随应变速率的增加而增加。最后,通过金相分析验证AlCu4SiMg合金的DRX动力学模型及有限元模拟结果的可靠性。
        To improve the understanding of coupling effect between dynamic recrystallization(DRX)behaviors and flow behaviors of as-cast AlCu_4 SiMg, a finite element(FE) simulation equipped with the models of DRX evolution was implemented. A series of isothermal compression tests were performed primarily on a Gleeble-3500 thermo-mechanical simulator in a temperature range of 648-748 K and a strain rate range of 0.01-10 s~(-1).According to the measured true stress-strain data,the strain hardening rate curves(du/de versus a) were plotted to identify the critical strains for DRX initiation(ε_c). By further derivation of the related material constants, the DRX volume fraction equation and the strain for 50% DRX(ε_(0.5)) equation were solved. Accordingly, the aforementioned DRX equations were implanted into the FE model to conduct a series of simulations for the isothermal compression tests. The results show that during the evolution of DRX volume fraction at a fixed strain rate, the strain required for the same amount of DRX volume fraction increases with decreasing temperature. In contrast, at a fixed temperature, it increases with increasing strain rate. Ultimately, the DRX kinetics model of AlCu4 SiMg alloy and the consequence of the FE analysis were validated by microstructure observations.
引文
[1]OKAYASU M,SATO K,MIZUNO M.A new etching technique for revealing the plastic deformation zone in an Al-Cu-Mg alloy[J].Journal of Materials Science,2008,43(8):2792-2798.
    [2]PAREL T S,WANG S C,STARINK M J.Hardening of an Al-Cu-Mg alloy containing Types I and II S phase precipitates[J].Materials&Design,2010,31(Suppl 1):S2-S5.
    [3]HUANG K,LOG R E.A review of dynamic recrystallization phenomena in metallic materials[J].Materials&Design,2016,111:548-574.
    [4]DOHERTY R D,HUGHES D A,HUMPHREYS F J,JONAS J J,JENSEN D J,KASSNER M E,KING W E,MCNELLEY T R,MCQUEEN H J,ROLLETT A D.Current issues in recrystallization:A review[J].Materials Science&Engineering A,1997,238(2):219-274.
    [5]SAKAI T,BELYAKOV A,KAIBYSHEV R,MIURA H,JONAS J J.Dynamic and post-dynamic recrystallization under hot,cold and severe plastic deformation conditions[J].Progress in Materials Science,2014,60(1):130-207.
    [6]WOO W,CHOO H,PRIME M B,FENG Z,CLAUSEN B.Microstructure,texture and residual stress in a friction-stir-processed AZ31B magnesium alloy[J].Acta Materialia,2008,56(8):1701-1711.
    [7]KAIBYSHEV R,MALOPHEYEV S.Mechanisms of dynamic recrystallization in aluminum alloys[J].Materials Science Forum,2014,794-796:784-789.
    [8]QUAN Guo-zheng,MAO An,LUO Gui-chang,LIANG Jian-ting,WU Dong-sen,ZHOU Jie.Constitutive modeling for the dynamic recrystallization kinetics of as-extruded 3Cr20Ni10W2 heat-resistant alloy based on stress-strain data[J].Materials&Design,2013,52(24):98-107.
    [9]QUAN Guo-zheng,LUO Gui-chang,LIANG Jian-ting,WUDong-sen,MAO An,LIU Qing.Modelling for the dynamic recrystallization evolution of Ti-6Al-4V alloy in two-phase temperature range and a wide strain rate range[J].Computational Materials Science,2015,97:136-147.
    [10]LI Yu-fei,WANG Zhen-hong,ZHANG Lin-ying,LUO Chao,LAIXin-chun.Arrhenius-type constitutive model and dynamic recrystallization behavior of V-5Cr-5Ti alloy during hot compression[J].Transactions of Nonferrous Metals Society of China,2015,25(6):1889-1900.
    [11]ZHOU Mi,LIN Yong-cheng,DENG Jiao,JIANG Yu-qiang.Hot tensile deformation behaviors and constitutive model of an Al-Zn-Mg-Cu alloy[J].Materials&Design,2014,59(6):141-150.
    [12]CAI Zhi-wei,CHEN Fu-xiao,MA Feng-jie,GUO Jun-qing.Dynamic recrystallization behavior and hot workability of AZ41Mmagnesium alloy during hot deformation[J].Journal of Alloys&Compounds,2016,670(3):55-63.
    [13]WEN Dong-xu,LIN Yong-cheng,ZHOU Ying.A new dynamic recrystallization kinetics model for a Nb containing Ni-Fe-Cr-base superalloy considering influences of initialδphase[J].Vacuum,2017,14:316-327.
    [14]CHEN Ming-song,LIN Yong-cheng,LI Kuo-kuo,ZHOU Ying.Anew method to establish dynamic recrystallization kinetics model of a typical solution-treated Ni-based superalloy[J].Computational Materials Science,2016,122:150-158.
    [15]LI Peng-wei,LI Hui-zhong,HUANG Lan,LIANG Xiao-peng,ZHUZe-xiao.Characterization of hot deformation behavior of AA2014forging aluminum alloy using processing map[J].Transactions of Nonferrous Metals Society of China,2017,27(8):1677-1688.
    [16]LI Dong-feng,ZHANG Duan-zheng,LIU Sheng-dan,SHANZhao-jun,ZHANG Xin-ming,WANG Qin,HAN Su-qi.Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation[J].Transactions of Nonferrous Metals Society of China,2016,26(6):1491-1497.
    [17]LI Hui-zhong,LIU Ruo-mei,LIANG Xiao-peng,DENG Min,LIAOHui-juan,HUANG Lan.Effect of pre-deformation on microstructures and mechanical properties of high purity Al-Cu-Mg alloy[J].Transactions of Nonferrous Metals Society of China,2016,26(6):1482-1490.
    [18]DHAL A,PANIGRAHI S K,SHUNMUGAM M S.Insight into the microstructural evolution during cryo-severe plastic deformation and post-deformation annealing of aluminum and its alloys[J].2017,726:1205-1219.
    [19]LI Bo,PAN Qing-lin,YIN Zhi-min.Characterization of hot deformation behavior of as-homogenized Al-Cu-Li-Sc-Zr alloy using processing maps[J].Materials Science&Engineering A,2014,614(4):199-206.
    [20]TAJALLY M,HUDA Z.Recrystallization kinetics for aluminum alloy 7075[J].Metal Science&Heat Treatment,2011,53(5-6):213-217.
    [21]CHENG Yong-qi,ZHANG Hui,CHEN Zhen-hua,XIAN Kui-feng.Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation[J].Journal of Materials Processing Technology,2008,208(1):29-34.
    [22]QUAN Guo-zheng,SHI Yu,WANG Yi-xin,KANG B S,KU T W,SONG W J.Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data[J].Materials Science&Engineering A,2011,528(28):8051-8059.
    [23]LIN Yong-Cheng,DENG Jiao,JIANG Yu-Qiang,WEN Dong-Xu,LIU Guan.Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy[J].Materials&Design,2014,55(6):949-957.
    [24]HSIAO I C,HUANG J C.Deformation mechanisms during low-and high-temperature superplasticity in 5083 Al-Mg alloy[J].Metallurgical&Materials Transactions A,2002,33(5):1373-1384.
    [25]LIAO X Z,HUANG J Y,ZHU Y T,ZHOU F,LAVERNIA E J.Nanostructures and deformation mechanisms in a cryogenically ball-milled Al-Mg alloy[J].Philosophical Magazine,2003,83(26):3065-3075.
    [26]YAO Li,LIU Zhi-yi,LIN Liang-hua,PENG Jiang-tao,NING Ai-lin.Deformation behavior of an Al-Cu-Mg-Mn-Zr alloy during hot compression[J].Journal of Materials Science,2011,46(11):3708-3715.
    [27]YANG Z,GUO Y C,LI J P,HE F,XIA F,LIANG M X.Plastic deformation and dynamic recrystallization behaviors of Mg-5Gd-4Y-0.5Zn-0.5Zr alloy[J].Materials Science&Engineering A,2008,485(1-2):487-491.
    [28]WANG K L,FU M W,LU S Q,LI X.Study of the dynamic recrystallization of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy inβ-forging process via Finite Element Method modeling and microstructure characterization[J].Materials&Design,2011,32(3):1283-1291.
    [29]JI Guo-liang,LI Fu-guo,LI Qing-hua,LI Hui-qu,LI Zhi.Research on the dynamic recrystallization kinetics of Aermet100 steel[J].Materials Science&Engineering A,2010,527(9):2350-2355.
    [30]LIN Yong-cheng,CHEN Ming-Song,ZHONG Jue.Effects of deformation temperatures on stress/strain distribution and microstructural evolution of deformed 42CrMo steel[J].Materials&Design,2009,30(3):908-913.
    [31]ZAHIRI S H,DAVIES C H J,HODGSON P D.A mechanical approach to quantify dynamic recrystallization in polycrystalline metals[J].Scripta Materialia,2005,52(4):299-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700