纳米材料应用在肿瘤诊断与治疗中:呈一体化的趋势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nanomaterials applied in tumor imaging diagnosis and treatment:an integration tendency
  • 作者:陈岳 ; 张天可 ; 徐勇
  • 英文作者:Chen Yue;Zhang Tianke;Xu Yong;Department of Urology,Second Hospital of Tianjin Medical University;Department of Anorectum,People's Hospital of Nankai University;
  • 关键词:纳米结构 ; 肿瘤 ; 分子靶向治疗 ; 组织工程 ; 纳米材料 ; 肿瘤影像学诊断 ; 肿瘤治疗 ; 生物毒性 ; 靶向纳米材料
  • 英文关键词:,Nanostructures;;Neoplasms;;Molecular Targeted Therapy;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:天津医科大学第二医院泌尿外科;南开大学附属人民医院肛肠科;
  • 出版日期:2019-02-27
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.871
  • 基金:国家自然科学基金面上项目(31771100),项目负责人:陈岳~~
  • 语种:中文;
  • 页:XDKF201914019
  • 页数:7
  • CN:14
  • ISSN:21-1581/R
  • 分类号:115-121
摘要
背景:随着纳米技术的飞速发展,纳米材料因具有多种优势特性在生物医学中的研究及应用日益增多,也成为抗肿瘤新方法中一个极具前景的研究方向。目的:综述纳米材料在肿瘤影像诊断与各种治疗方式中的应用。方法:以"纳米材料;肿瘤影像学诊断;肿瘤治疗;生物毒性"或"nanophase materials;imaging diagnosis of tumor;nanocarriers;treatment of tumors;biological toxicity"为检索词,检索万方、爱思维尔数据库和PubMed数据库中关于纳米材料在肿瘤影像诊断与治疗中应用的文章。结果与结论:纳米材料具有独特的理化性质和可塑造性,可通过特异性修饰成为具有靶向性的、可携带抗肿瘤药物或活性因子的一类医用材料,并且能通过多种多样的修饰和结构改变以适应不同的需求,在医用领域有着不可限量的前景。目前,纳米材料在肿瘤诊疗方面并非独立的,而是呈一体化趋势,即先靶向至肿瘤组织处,在影像学诊断的同时释放活性药物,或通过光热转化等形式对肿瘤进行杀灭。
        BACKGROUND: With the rapid development of nano-technology, the research and application of nanomaterials in biomedicine are increasing due to various advantages. It becomes a promising research direction in new anti-tumor methods. OBJECTIVE: To summarize the application of nanomaterials in imaging diagnosis and treatment of tumors. METHODS: The authors retrieved articles about the application of nanomaterials in tumor imaging diagnosis and treatment in WanFang, VIP, Elsevier and PubMed databases. The keywords were "nanophase materials, imaging diagnosis of tumor, nanocarriers, treatment of tumors, biological toxicity" in Chinese and English, respectively. RESULTS AND CONCLUSION: Due to its unique physical and chemical properties and plasticity, nanomaterials can become targeted medical materials that can carry anti-tumor drugs or active factors through specific modifications. Moreover, nanomaterials can adapt to different demands through various modifications and structural changes. Therefore, they have an unlimited prospect in the medical field. Currently, nanomaterials are not independent in the aspects of tumor diagnosis and treatment, but show an integration trend; that is, they are first targeted to tumor tissues, release active drugs during imaging diagnosis, or kill tumors through photothermal transformation.
引文
[1]Jemal A,Bray F,Center M,et al.Global cancer statistics.CACancer J Clin.2011;61:69-90.
    [2]Siegel R,Miller K,Jemal A.Cancer statistics,2017.CA Cancer JClin.2017;67:7-30.
    [3]de Planque MR,Aghdaei S,Roose T,et al.Electrophysiological characterization of membrane disruption by nanoparticles.ACS Nano.2011;5(5):3599-3606.
    [4]Aillon K,Xie Y,El-Gendy N,et al.Effects of nanomaterial physicochemical properties on in vivo toxicity.Adv Drug Deliv Rev.2009;61(6):457-466.
    [5]Bhattacharyya S,Kudgus RA,Bhattacharya R,et al.Inorganic nanoparticles in cancer therapy.Pharm Res.2010;28(2):237-259.
    [6]Nazir S,Hussain T,Ayub A,et al.Nanomaterials in combating cancer:therapeutic applications and developments.Nanomedicine.2014;10(1):19-34.
    [7]Moqharabi M,Abdollahi M,Faramarzi MA.Toxicity of nanomaterials;an undermined issue.Daru.2014;22:59.
    [8]Yang Y,Xu L,Dekkers S,et al.Aggregation State of Metal-based Nanomaterials at the Pulmonary Surfactant Film Determines Biophysical Inhibition.Environ Sci Technol.2018;52(15):8920-8929.
    [9]Feng X,Chen A,Zhang Y,et al.Application of dental nanomaterials:potential toxicity to the central nervous system.Int J Nanomedicine.2015;10:3547-3565.
    [10]Janib SM,Moses AS,MacKay JA.Imaging and drug delivery using theranostic nanoparticles.Adv Drug Deliv Rev.2010;62(11):1052-1063.
    [11]Lu K,Aung T,Guo N,et al.Nanoscale Metal-Organic Frameworks for Therapeutic,Imaging,and Sensing Applications.Adv Mater.2018;30(37):e1707634.
    [12]Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation.Cell.2011;144(5):646-674.
    [13]Danquah MK,Zhang XA,Mahato RI.Extravasation of polymeric nanomedicines across tumor vasculature.Adv Drug Deliv Rev.2011;63(8):623-639.
    [14]Garbayo E,Estella-Hermoso de Mendoza A,Blanco-Prieto MJ.Diagnostic and therapeutic uses of nanomaterials in the brain.Curr Med Chem.2014;21(36):4100-4131.
    [15]Reuveni T,Motiei M,Romman Z,et al.Targeted gold nanoparticles enable molecular CT imaging of cancer:an in vivo study.Int J Nanomedicine.2011;6:2859-2864.
    [16]Hu X,Sun J,Li F,et al.Renal-Clearable Hollow Bismuth Subcarbonate Nanotubes for Tumor Targeted Computed Tomography Imaging and Chemoradiotherapy.Nano Lett.2018;18(2):1196-1204.
    [17]Wang Z,Shao D,Chang Z,et al.Janus Gold Nanoplatform for Synergetic Chemoradiotherapy and Computed Tomography Imaging of Hepatocellular Carcinoma.ACS Nano.2017;11(12):12732-12741.
    [18]Rand D,Ortiz V,Liu Y,et al.Nanomaterials for X-ray imaging:gold nanoparticle enhancement of x-ray scatter imaging of hepatocellular carcinoma.Nano Lett.2011;11(7):2678-2683.
    [19]Zhang N,Li J,Hou R,et al.Bubble-generating nano-lipid carriers for ultrasound/CT imaging-guided efficient tumor therapy.Int J Pharm.2017;534(1-2):251-256.
    [20]Liu P,Li J,Zhang C,et al.Micro-CT molecular imaging of tumor angiogenesis using a magnetite nano-cluster probe.J Biomed Nanotechnol.2013;9(6):1041-1049.
    [21]Li Q,Chen Y,Zhou X,et al.Hyaluronic Acid-Methotrexate Conjugates Coated MagneticPolydopamine Nanoparticles for Multimodal Imaging-Guided Multistage Targeted ChemoPhotothermal Therapy.Mol Pharm.2018;15(9):4049-4062.
    [22]Liu Y,Yang Z,Huang X,et al.Glutathione-Responsive Self-Assembled Magnetic Gold Nanowreath for Enhanced Tumor Imaging and Imaging-Guided Photothermal Therapy.ACS Nano.2018;12(8):8129-8137.
    [23]Chee HL,Gan CRR,Nq M,et al.Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging.ACSNano.2018;12(7):6480-6491.
    [24]Huang X,Fan C,Zhu H,et al.Glypican-1-antibody-conjugated Gd-Au nanoclusters for FI/MRI dual-modal targeted detection of pancreatic cancer.Int J Nanomedicine.2018;13:2585-2599.
    [25]Ni D,Jiang D,Ehlerding EB,et al.Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry:Basic Principles,Strategies,and Applications.Acc Chem Res.2018;51(3):778-788.
    [26]Lee SB,Kumar D,Li Y,et al.PEGylated crushed gold shell-radiolabeled core nanoballs for in vivo tumor imaging with dual positron emission tomography and Cerenkov luminescent imaging.J Nanobiotechnology.2018;16(1):41.
    [27]Chen F,Ma K,Benezra M,et al.Cancer-Targeting Ultrasmall Silica Nanoparticles for Clinical Translation:Physicochemical Structure and Biological Property Correlations.Chem Mater.2017;29(20):8766-8779.
    [28]Chen F,Ma K,Zhang L,et al.Target-or-Clear Zirconium-89Labeled Silica Nanoparticles for Enhanced Cancer-Directed Uptake in Melanoma:A Comparison of Radiolabeling Strategies.Chem Mater.2017;29(19):8269-8281.
    [29]Wang Y,Liu K,Luo Z,et al.Preparation and tumor cell model based biobehavioral evaluation of the nanocarrier system using partially reduced graphene oxide functionalized by surfactant.Int J Nanomedicine.2015;10:4605-4620.
    [30]Park K.Controlled drug delivery systems:past forward and future back.J Control Release.2014;190:3-8.
    [31]Ghosh P,Han G,De M,et al.Gold nanoparticles in delivery applications.Adv Drug Deliv Rev.2008;60(11):1307-1315.
    [32]Zhai J,Luwor RB,Ahmed N,et al.Paclitaxel-Loaded Self-Assembled Lipid Nanoparticles as Targeted Drug Delivery Systems for the Treatment of Aggressive Ovarian Cancer.ACSAppl Mater Interfaces.2018;10(30):25174-25185.
    [33]Kang B,Austin LA,El-Sayed MA.Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes.ACS Nano.2014;8(5):4883-4892.
    [34]Liu L,Xia D,Klausen LH,et al.The self-assembled behavior of DNA bases on the interface.Int J Mol Sci.2014;15(2):1901-1914.
    [35]Powell JT,Akhuetie-Oni BO,Zhang Z,et al.DNA origami rotaxanes:Tailored synthesis and controlled structure switching.Angew Chem Int Engl.2016;55(38):11412-11416.
    [36]Zheng H,Xiao M,Yan Q,et al.Small circular DNA molecules act as rigid motifs to build DNA nanotubes.J Am Chem Soc.2014;136(29):10194-10197.
    [37]Zhang Q,Jiang Q,Li N,et al.DNA origami as an in vivo drug delivery vehicle for cancer therapy.ACS Nano.2014;8(7):6633-6643.
    [38]Chen Q,Wen J,Li H,et al.Recent advances in different modal imaging-guided photothermal therapy.Biomaterials.2016;106:144-166.
    [39]Chen YW,Su YL,Hu SH,et al.Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment.Adv Drug Deliv Rev.2016;105:190-204.
    [40]Liang X,Shang W,Chi C,et al.Dye-conjugated single-walled Carbon nanotubes induce photothermal therapy under the guidance of near-infrared imaging.Cancer Lett.2016;383(2):243-249.
    [41]Liu T,Wang C,Gu X,et al.Drug delivery with PEGylated MoS2nano-sheets for combined photothermal and chemotherapy of cancer.Adv Mater.2014;26(21):3433-3440.
    [42]Ahmad R,Fu J,He N,et al.Advanced Gold nanomaterials for photothermal therapy of cancer.J Nanosci Nanotechnol.2016;16(1):67-80.
    [43]Chen Q,Ke H,Dai Z,et al.Nanoscale theranostics for physical stimulus-responsive cancer therapies.Biomaterials.2015;73:214-230.
    [44]Hussein EA,Zaqho MM,Nasrallah GK,et al.Recent advances in functional nanostructures as cancer photothermal therapy.Int J Nanomedicine.2018;13:2897-2906.
    [45]Lu Q,Dai X,Zhang P,et al.Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells.Int JNanomedicine.2018;13:2491-2505.
    [46]Abrajamse H,Kruger CA,Kadanyo S,et al.Nanoparticles for Advanced Photodynamic Therapy of Cancer.Photomed Laser Surg.2017;35(11):581-588.
    [47]Yuan A,Tang X,Qiu X,et al.Activatable photodynamic destruction of cancer cells by NIR dye/photosensitizer loaded liposomes.Chem Commun.2015;51(16):3340.
    [48]Guo J,Rahme K,He Y,et al.Gold nanoparticles enlighten the future of cancer theranostics.Int J Nanomedicine.2017;12:6131-6152.
    [49]Mesquita MQ,Dias CJ,Gamelas S,et al.An insight on the role of photosensitizer nanocarriers for Photodynamic Therapy.An Acad Bras Cienc.2018;90:1101-1130.
    [50]Sneider A,Jadia R,Piel B,et al.Engineering remotely triggered liposomes to target triple negative breast cancer.Oncomedicine.2017;2:1-13.
    [51]Wang S,Yuan F,Chen K,et al.Synthesis of hemoglobin conjugated polymeric micelle:a ZnPc carrier with oxygen self-compensating ability for photodynamic therapy.Biomacromolecules.2015;16(9):2693-2700.
    [52]Moretton MA,Hocht C,Taira C,et al.Rifampicin-loaded“flower-like”polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid.Nanomedicine.2014;9(11):1635-1650.
    [53]Gao L,Liu R,Gao F,et al.Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro.ACS Nano.2014;8(7):7260-7271.
    [54]Ohulchanskyy TY,Roy I,Goswami LN,et al.Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer.Nano Lett.2007;7(9):2835-2842.
    [55]Zhang P,Huang H,Huang J,et al.Noncovalent ruthenium(Ⅱ)complexes-single-walled carbon nanotube composites for bimodal photothermal and photodynamic therapy with near-infrared irradiation.ACS Appl Mater Interfaces.2015;7(41):23278-23290.
    [56]Gao S,Zheng P,Li Z,et al.Biomimetic O2-Evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor.Biomaterials.2018;178:83-94.
    [57]Qiu M,Ren WX,Jeong T,et al.Omnipotent phosphorene:a next-generation,two-dimensional nanoplatform for multidisciplinary biomedical applications.Chem Soc Rev.2018;47(15):5588-5601.
    [58]Wang H,Yang X,Shao W,et al.Ultrathin Black Phosphorus Nanosheets for Efficient Singlet Oxygen Generation.J Am Chem Soc.2015;137(35):11376-11382.
    [59]Wang H,Jiang S,Shao W,et al.Optically Switchable Photocatalysis in Ultrathin Black Phosphorus Nanosheets.JAm Chem Soc.2018;140(9):3474-3480.
    [60]Doyen J,Falk AT,Floquet V,et al.Proton beams in cancer treatments:Clinical outcomes and dosimetric comparisons with photon therapy.Cancer Treat Rev.2016;43:104-112.
    [61]Ma J,Xu R,Sun J,et al.Nanoparticle surface and nanocore properties determine the effect on radiosensitivity of cancer cells upon ionizing radiation treatment.J Nanosci Nanotechanol.2013;13(2):1472-1475.
    [62]Han L,Xia JM,Hai X,et al.Protein-stabilized gadolinium oxide-gold nanoclusters hybrid for multimodal imaging and drug delivery.ACS Appl Mater Interfaces.2017;9(8):6941-6949.
    [63]Shi M,Paquette B,Thippayamontri T,et al.Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of gold nanoparticles.Int J Nanomedicine.2016;11:5323-5333.
    [64]Ahn SH,Lee N,Choi C,et al.Feasibility study of Fe3O4/TaOx nanoparticles as a radiosensitizer for proton therapy.Phys Med Biol.2018;64(11):114001.
    [65]Hazkani I,Motiei M,Betzer O,et al.Can molecular profiling enhance radiotherapy?Impact of personalized targeted gold nanoparticles on radiosensitivity and imaging of adenoid cystic carcinoma.Theranostics.2017;7(16):3962-3971.
    [66]Amato E,Italiano A,Leotta S,et al.Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumor capillary vessels.J Xray Sci Technol.2013;21(2):237-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700