Transition metal coordinated framework porphyrin for electrocatalytic oxygen reduction
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transition metal coordinated framework porphyrin for electrocatalytic oxygen reduction
  • 作者:Chang-Xin ; Zhao ; Bo-Quan ; Li ; Jia-Ning ; Liu ; Jia-Qi ; Huang ; Qiang ; Zhang
  • 英文作者:Chang-Xin Zhao;Bo-Quan Li;Jia-Ning Liu;Jia-Qi Huang;Qiang Zhang;Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University;Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology;
  • 英文关键词:Electrocatalysis;;Oxygen reduction reaction;;Transition metal coordination;;Framework porphyrin;;Fuel cells
  • 中文刊名:FXKB
  • 英文刊名:中国化学快报(英文版)
  • 机构:Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University;Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology;
  • 出版日期:2019-04-15
  • 出版单位:Chinese Chemical Letters
  • 年:2019
  • 期:v.30
  • 基金:supported by National Key Research and Development Program (Nos. 2016YFA0202500 and 2016YFA0200102);; National Natural Science Foundation of China (No. 21825501);; Tsinghua University Initiative Scientific Research Program
  • 语种:英文;
  • 页:FXKB201904018
  • 页数:4
  • CN:04
  • ISSN:11-2710/O6
  • 分类号:113-116
摘要
Oxygen reduction reaction(ORR) constitutes the core process of many clean and sustainable energy systems including fuel cells and metal–air batteries. Developing high-performance and cost-efficiency ORR electrocatalysts is of great significance to the practical applications of the above-mentioned energy storage devices. Transition metal coordinated porphyrin electrocatalysts are highly considered as a promising substitution of noble-metal-based electrocatalyst because of their high ORR reactivity, where the ORR performances of the porphyrin-based electrocatalysts are highly dependent on the transition metal center. Herein a series of framework porphyrin electrocatalysts coordinated with different transition metal centers(M-POF, where M is Mn, Fe, Co, Ni, Cu, or Zn) was designed, synthesized, and evaluated in regards of electrocatalytic ORR performances. Among all, the Co-POF electrocatalyst exhibits the best ORR performances with the highest half-wave potential of 0.81 V vs. RHE and the lowest Tafel slope of 53 mV/dec. This contribution affords an optimized high-performance ORR electrocatalyst and provides instructions for further rational design of porphyrin-based ORR electrocatalysts for sustainable energy applications.
        Oxygen reduction reaction(ORR) constitutes the core process of many clean and sustainable energy systems including fuel cells and metal–air batteries. Developing high-performance and cost-efficiency ORR electrocatalysts is of great significance to the practical applications of the above-mentioned energy storage devices. Transition metal coordinated porphyrin electrocatalysts are highly considered as a promising substitution of noble-metal-based electrocatalyst because of their high ORR reactivity, where the ORR performances of the porphyrin-based electrocatalysts are highly dependent on the transition metal center. Herein a series of framework porphyrin electrocatalysts coordinated with different transition metal centers(M-POF, where M is Mn, Fe, Co, Ni, Cu, or Zn) was designed, synthesized, and evaluated in regards of electrocatalytic ORR performances. Among all, the Co-POF electrocatalyst exhibits the best ORR performances with the highest half-wave potential of 0.81 V vs. RHE and the lowest Tafel slope of 53 mV/dec. This contribution affords an optimized high-performance ORR electrocatalyst and provides instructions for further rational design of porphyrin-based ORR electrocatalysts for sustainable energy applications.
引文
[1]X.Ge,A.Sumboja,D.Wuu,et al.,ACS Catal.5(2015)4643-4667.
    [2]A.A.Gewirth,J.A.Varnell,A.M.DiAscro,Chem.Rev.118(2018)2313-2339.
    [3]Y.Guo,P.Yuan,J.Zhang,et al.,ACS Nano 12(2018)1894-1901.
    [4]J.Li,Z.Xi,Y.T.Pan,et al.,J.Am.Chem.Soc.140(2018)2926-2932.
    [5]H.Yuan,L.Kong,T.Li,Q.Zhang,Chin.Chem.Lett.28(2017)2180-2194.
    [6]W.T.Hong,M.Risch,K.A.Stoerzinger,et al.,Energy Environ.Sci.8(2015)1404-1427.
    [7]Q.Wang,Y.Ji,Y.Lei,et al.,ACS Energy Lett.3(2018)1183-1191.
    [8]C.Y.Lin,D.Zhang,Z.Zhao,Z.Xia,Adv.Mater.30(2018)1703646.
    [9]M.Kiani,J.Zhang,Y.Luo,et al.,J.Energy Chem.27(2018)1124-1139.
    [10]V.R.Stamenkovic,D.Strmcnik,P.P.Lopes,N.M.Markovic,Nat.Mater.16(2017)57-69.
    [11]C.Lv,C.Yan,G.Chen,et al.,Angew.Chem.Int.Ed.57(2018)6073-6076.
    [12]Z.W.Seh,J.Kibsgaard,C.F.Dickens,et al.,Science 355(2017)eaad4998.
    [13]M.Shao,Q.Chang,J.P.Dodelet,R.Chenitz,Chem.Rev.116(2016)3594-3657.
    [14]X.X.Wang,D.A.Cullen,Y.T.Pan,et al.,Adv.Mater.30(2018)1706758.
    [15]X.Zhang,X.Cheng,Q.Zhang,J.Energy Chem.25(2016)967-984.
    [16]B.Y.Xia,Y.Yan,N.Li,et al.,Nat.Energy 1(2016)15006.
    [17]H.B.Yang,J.Miao,S.F.Hung,et al.,Sci.Adv.2(2016)e1501122.
    [18]S.Dou,A.Shen,L.Tao,S.Wang,Chem.Commun.(Camb.)50(2014)10672-10675.
    [19]L.Yang,X.Zeng,W.Wang,D.Cao,Adv.Funct.Mater.28(2018)1704537.
    [20]P.Yin,T.Yao,Y.Wu,et al.,Angew.Chem.Int.Ed.55(2016)10800-10805.
    [21]J.Wu,S.Dou,A.Shen,et al.,J.Mater.Chem.A Mater.Energy Sustain.2(2014)20990-20995.
    [22]V.M.Bau,X.Bo,L.Guo,J.Energy Chem.26(2017)63-71.
    [23]L.Hou,J.Guo,Z.Xiang,J.Energy Chem.28(2019)73-78.
    [24]W.Xia,A.Mahmood,Z.Liang,R.Zou,S.Guo,Angew.Chem.Int.Ed.55(2016)2650-2676.
    [25]B.Wang,X.Cui,J.Huang,R.Cao,Q.Zhang,Chin.Chem.Lett.29(2018)1757-1767.
    [26]Y.Gorlin,B.Lassalle-Kaiser,J.D.Benck,et al.,J.Am.Chem.Soc.135(2013)8525-8534.
    [27]Z.Zhang,J.Liu,J.Gu,L.Su,L.Cheng,Energy Environ.Sci.7(2014)2535-2558.
    [28]T.Wang,J.Wu,Y.Liu,et al.,Energy Storage Mater.16(2019)24-30.
    [29]Z.Hu,C.Chen,H.Meng,et al.,Electrochem.commun.13(2011)763-765.
    [30]S.Li,B.Li,L.Ma,J.Yang,H.Xu,Chin.Chem.Lett.28(2017)2159-2163.
    [31]B.Yan,N.M.Concannon,J.D.Milshtein,F.R.Brushett,Y.Surendranath,Angew.Chem.Int.Ed.56(2017)7496-7499.
    [32]J.Xiao,Y.Xia,C.Hu,J.Xi,S.Wang,J.Mater.Chem.A Mater.Energy Sustain.5(2017)11114-11123.
    [33]J.L.Shi,C.Tang,J.Q.Huang,W.Zhu,Q.Zhang,J.Energy Chem.27(2018)167-175.
    [34]C.Tang,Q.Zhang,Adv.Mater.29(2017)1604103.
    [35]C.Tang,H.F.Wang,Q.Zhang,Accounts.Chem.Res.51(2018)881-889.
    [36]M.Zhou,H.L.Wang,S.Guo,Chem.Soc.Rev.45(2016)1273-1307.
    [37]Y.Liang,Y.Li,H.Wang,et al.,Nat.Mater.10(2011)780-786.
    [38]C.Tang,M.M.Titirici,Q.Zhang,J.Energy Chem.26(2017)1077-1093.
    [39]J.Xie,B.Q.Li,H.J.Peng,et al.,Angew.Chem.Int.Ed.58(2019)4963-4967.
    [40]M.L.Rigsby,D.J.Wasylenko,M.L.Pegis,J.M.Mayer,J.Am.Chem.Soc.137(2015)4296-4299.
    [41]W.Zhang,W.Lai,R.Cao,Chem.Rev.117(2017)3717-3797.
    [42]A.N.Oldacre,A.E.Friedman,T.R.Cook,J.Am.Chem.Soc.139(2017)1424-1427.
    [43]G.Luo,Y.Wang,Y.Li,Sci.Bull.(Beijing)62(2017)1337-1343.
    [44]S.C.Xu,B.C.Hu,W.Y.Zhou,C.G.Sun,Z.L.Liu,Chin.Chem.Lett.23(2012)157-160.
    [45]A.P.Cote,A.I.Benin,N.W.Ockwig,et al.,Science 310(2005)1166-1170.
    [46]P.Kuhn,M.Antonietti,A.Thomas,Angew.Chem.Int.Ed.47(2008)3450-3453.
    [47]E.L.Spitler,W.R.Dichtel,Nat.Chem.2(2010)672-677.
    [48]A.Bhunia,I.Boldog,A.Moeller,C.Janiak,J.Mater,Chem.A 1(2013)14990-14999.
    [49]Y.Yuan,P.Cui,Y.Tian,et al.,Chem.Sci.7(2016)3751-3756.
    [50]B.Q.Li,S.Y.Zhang,B.Wang,et al.,Energy Environ.Sci.11(2018)1723-1729.
    [51]B.Q.Li,S.Y.Zhang,L.Kong,H.J.Peng,Q.Zhang,Adv.Mater.30(2018)1707483.
    [52]B.Q.Li,X.R.Chen,X.Chen,et al.,Research 2019(2019)4608940.
    [53]L.Kong,B.Q.Li,H.J.Peng,et al.,Adv.Energy Mater.8(2018)1800849.
    [54]J.J.Xu,C.H.Xiao,S.J.Ding,Chin.Chem.Lett.28(2017)748-754.
    [55]C.Tang,H.F.Wang,X.Chen,et al.,Adv.Mater.28(2016)6845-6851.
    [56]C.Tang,H.S.Wang,H.F.Wang,et al.,Adv.Mater.27(2015)4516-4522..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700