退火温度对Ta_2O_5/SiO_2多层反射膜结构和应力特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of annealing temperature on structure and stress properties of Ta_2O_5/SiO_2 multilayer reflective coatings
  • 作者:刘保剑 ; 段微波 ; 李大琪 ; 余德明 ; 陈刚 ; 王天洪 ; 刘定权
  • 英文作者:Liu Bao-Jian;Duan Wei-Bo;Li Da-Qi;Yu De-Ming;Chen Gang;Wang Tian-Hong;Liu Ding-Quan;Shanghai Institute of Technical Physics, Chinese Academy of Sciences;
  • 关键词:光学薄膜 ; Ta2O5/SiO2多层反射膜 ; 退火 ; 应力特性
  • 英文关键词:optical thin films;;Ta2O5/SiO2 multilayer reflective coatings;;annealing;;residual stress
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国科学院上海技术物理研究所;
  • 出版日期:2019-05-24 07:19
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金青年科学基金(批准号:61605229);; 中国科学院上海技术物理研究所创新专项基金(批准号:CX-129)资助的课题~~
  • 语种:中文;
  • 页:WLXB201911020
  • 页数:7
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:172-178
摘要
介质膜反射镜是星载激光测高仪系统中不可缺少的薄膜元件,其面形质量直接影响探测系统测距的分辨率和精度.本文采用离子束辅助电子束蒸发工艺在石英基底上沉积Ta_2O_5/SiO_2多层反射膜,并在200—600℃的空气中做退火处理.通过X射线衍射、原子力显微镜、分光光度计及激光干涉仪等测试手段,系统研究了退火温度对Ta_2O_5/SiO_2多层反射膜结构、光学性能以及应力特性的影响.结果表明:Ta_2O_5/SiO_2多层反射膜退火后,膜层结构保持稳定,膜层表面粗糙度得到有效改善;反射膜在500—600℃退火后,残余应力由压应力向张应力转变;采用合适的退火温度可以有效释放Ta_2O_5/SiO_2薄膜的残余应力,使薄膜与基底构成的介质膜反射镜具有较好的面形精度.本文的实验结果对退火工艺在介质膜反射镜面形控制技术方面的应用具有重要意义.
        In the optical system of spaceborne laser altimeter, dielectric mirror is an indispensable optical film element. Its surface shape quality directly affects the resolution and accuracy of distance measurement of the detection system. It is pressing and necessary to carry out research on the surface shape control technology of dielectric mirror to eliminate or reduce the effect of film stress on surface shape. The Ta_2O_5/SiO_2 multilayer reflective coatings are deposited on quartz substrates by using the ion beam assisted electron beam evaporation(IBE), and then annealed in air in a temperature range from 200 to 600 ℃. The effect of annealing temperature on the structure, optical and stress properties of Ta_2O_5/SiO_2 multilayer reflective coatings are systemically investigated by using x-ray diffraction, atomic force microscope, spectrophotometer and laser interferometer.The results show that all the Ta_2O_5/SiO_2 multilayer reflective coatings, after being annealed, are amorphous in structure. The annealing temperature has a great influence on the surface roughness of reflective coating. With the increase of annealing temperature, the surface roughness of reflective coating first decreases and then gradually increases, but is still smaller than that of as-deposited sample. After being annealed, the reflectance spectrum of reflective coating shifts slightly toward the long-wave direction, and the reflectivity increases a little. When being annealed at 500-600 ℃, the compressive stress of reflective coating could be transformed into tensile stress, and the surface is changed from convex to concave shape. It can be concluded that annealing at an appropriate temperature can effectively release residual stress of Ta_2O_5/SiO_2 multilayer reflective coating and eliminate the deformation of substrate caused by film stress, and thus improving the surface shape quality of dielectric mirror., After being annealed, the reflective coating still possesses the stable structure and spectral properties, so that dielectric mirror can meet the application requirements of spaceborne laser altimeter. In this paper, the experimental results are of great significance for applying the annealing technology to the surface shape control technology of dielectric mirrors.
引文
[1]Tang X M,Xie J F,Fu X K,Mo F,Li S N,Dou X H 2017Acta Geod.Cartogr.Sin.46 714(in Chinese)[唐新明,谢俊峰,付兴科,莫凡,李少宁,窦显辉2017测绘学报46 714]
    [2]Liu B,Zhang J,Lu M,Teng S H,Ma Y X,Zhang W G 2015Laser Infr.54 5104(in Chinese)[刘斌,张军,鲁敏,滕书华,马燕新,张文广2015激光与红外54 5104]
    [3]Liu H,Shu R,Hong G L,Zheng L,Ge Y,Hu Y H 2014 Acta Phys.Sin.63 104214(in Chinese)[刘豪,舒嵘,洪光烈,郑龙,葛烨,胡以华2014物理学报63 104214]
    [4]Schiltz D,Patel D,Baumgarten C,Reagan B A,Rocca J J,Menoni C S 2017 Appl.Opt.5 6
    [5]Kumar S,Shankar A,Kishore N,Mukherjee C,Kamparath R,Thakur S 2019 Optik 176 438
    [6]Qiao Z,Pu Y T,Liu H,Luo K,Wang G,Liu Z C,Ma P 2015Thin Solid Films 592 221
    [7]Ailloud Q,Zerrad M,Amra C 2018 Opt.Express 26 13264
    [8]Ma Y,Yang F L,Yi H,Li S 2015 Infrar.Laser Eng.44 2401(in Chinese)[马跃,阳凡林,易洪,李松2015红外与激光工程44 2401]
    [9]Pang Z H,Fan X W,Chen Q F,Ma Z,Zou G Y 2013 Acta Opt.Sin.33 186(in Chinese)[庞志海,樊学武,陈钦芳,马臻,邹刚毅2013光学学报33 186]
    [10]Wang L S,Liu H S,Jiang Y G,Yang X,Liu D D,Ji Y Q,Zhang F,Chen D Y 2017 Optik 142 33
    [11]Sertel T,Sonmez N A,Cetin S S,Ozcelik S 2019 Ceram.Int.45 11
    [12]Li S D,Liu H S,Jiang Y G,He J H,Wang L S,Ji Y Q 2019Optik 181 695
    [13]Bischoff M,Nowitzki T,Vo?O,Wilbrandt S,Stenzel O 2014Appl.Opt.5 3
    [14]Jena S,Tokas R B,Rao K D,Thakur S,Sahoo N K 2016Appl.Opt.55 6108
    [15]?etin?rgü-Goldenberg E,Klemberg-Sapieha J E,Martinu L2012 Appl.Opt.51 6498
    [16]Ji Y Q,Jiang Y G,Liu H S,Wang L S,Liu D D,Jiang C H,Yang Y P,Fan R W,Chen D Y 2013 Infrar.Laser Eng.42418(in Chinese)[季一勤,姜玉刚,刘华松,王利栓,刘丹丹,姜承慧,羊亚平,樊荣伟,陈德应2013红外与激光工程42 418]
    [17]Leng J,Ji Y Q,Liu H S,Zhuang K W,Liu D D 2018 Infrar.Laser Eng.47 196(in Chinese)[冷健,季一勤,刘华松,庄克文,刘丹丹2018红外与激光工程47 196]
    [18]Shen Y M,Han Z X,Shao J D,Shao S Y,He H B 2008 Chin.Opt.Lett.6 225
    [19]Stoney G G 1909 Proc.R.Soc.London Ser.A 82 172
    [20]Huang C H,Xue Y Y,Peng H,Xia Z L,Guo P T 2009 Chin.J.Lasers 36 364(in Chinese)[黄才华,薛亦渝,彭桦,夏志林,郭培涛2009中国激光36 364]
    [21]Shen Y M 2008 Ph.D.Dissertation(Shanghai:Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences)(in Chinese)[申雁鸣2008博士学位论文(上海:中国科学院上海光学精密机械研究所)]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700