基于Kriging近似模型的碳纤维增强复合材料疲劳性能预测及其应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon Fiber Reinforced Plastic Fatigue Performance Prediction and Application Based on Kriging Surrogate Model
  • 作者:籍庆辉 ; 朱平 ; 卢家海 ; 刘钊
  • 英文作者:JI Qinghui;ZHU Ping;LU Jiahai;LIU Zhao;State Key Laboratory of Mechanical System and Vibration;Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,Shanghai Jiao Tong University;
  • 关键词:电动汽车 ; 动力电池箱壳体 ; 碳纤维增强树脂基复合材料 ; Kriging近似模型 ; 优化设计
  • 英文关键词:electric rehicle;;shell of power battery pack;;carbon fiber reinforced plastic(CFRP) composite;;Kriging model;;optimization design
  • 中文刊名:SHJT
  • 英文刊名:Journal of Shanghai Jiaotong University
  • 机构:上海交通大学机械系统与振动国家重点实验室;上海市复杂薄板结构数字化制造重点实验室;
  • 出版日期:2017-02-28
  • 出版单位:上海交通大学学报
  • 年:2017
  • 期:v.51;No.372
  • 基金:国家自然科学基金项目(11372181);; 国汽(北京)轻量化技术研究院开放课题(20130303)资助
  • 语种:中文;
  • 页:SHJT201702001
  • 页数:7
  • CN:02
  • ISSN:31-1466/U
  • 分类号:3-9
摘要
以平纹机织碳纤维增强树脂基(CFRP)复合材料为研究对象,通过力学试验测试材料的静态力学和疲劳力学性能,结合Kriging插值方法和Basquin疲劳方程建立预测任意载荷下疲劳应力-循环寿命(S-N)曲线的恒幅寿命图模型,并以此作为复合材料结构优化设计的性能约束;同时,利用最优拉丁超立方试验设计方法和Kriging近似模型构建优化目标和约束响应的近似模型,采用遗传算法优化得到CFRP复合材料电动汽车电池箱壳体的厚度,并通过台架实验加以验证.结果表明,优化后,电池箱壳体结构的减重率达到34.39%.
        Mechanical properties of plain weave carbon fiber reinforced plastic(CFRP)composite were studied by static and fatigue experiments.The new Haigh diagram model was established by using Kriging interpolation method and Basquin formulation.The model can predict S-N curves under random loading conditions.And those curves were used as constraints of optimization design.The surrogate modes of optimization object and constraint were established using optimal Latin hypercube design(OLHD)of experiment and Kriging model.The shell thicknesses of power battery pack of electric vehicle were obtained by genetic algorithm.The optimized results were verified through fatigue bench testing.The weight of optimized structure reduced 34.39%.
引文
[1]HESSE S H,LUKASZEWICZ J A,DUDDECK F.A method to reduce design complexity of automotive composite structures with respect to crashworthiness[J].Composite Structure,2015,129(1):236-249.
    [2]LAKSHMI K,RAM R.Optimal design of laminate composite plates using dynamic hybrid adaptive harmony search algorithm[J].Journal of Reinforced Plastics and Composites,2015,34(6):493-518.
    [3]李振凯,余音,汪海.复合材料层合板双面贴补结构渐进损伤分析[J].上海交通大学学报,2014,48(6):877-882.LI Zhenkai,YU Yin,WANG Hai.Progressive damage analysis of double-sided adhesively bonding repaired structures of composite laminates[J].Journal of Shanghai Jiao Tong University,2014,48(6):877-882.
    [4]FANG J G,GAO Y K,SUN G Y,et al.Multiobjective robust design optimization of fatigue for a truck cab[J].Reliability Engineering and System Safety,2015,135:1-8.
    [5]JEMEJ K.Influence of fatigue-life data modeling on the estimated reliability of a structure subjected to a constant-amplitude loading[J].Reliability Engineering and System Safety,2015,142:238-247.
    [6]黄章俊,王成恩.基于Kriging模型的涡轮盘优化设计方法[J].计算机集成制造系统,2010,16(5):905-910.HUANG Zhangjun,WANG Chengen.Turbine discs optimization design based on Kriging model[J].Computer Intergrated Manufacturing Systems,2010,16(5):905-910.
    [7]BEHESHTY M H,HARRIS B.A constant life model of fatigue behavior for carbon fiber composites:The effect of impact damage[J].Composites Science and Technology,1998,58(1):9-18.
    [8]VASSILOPOULOS A P,MANSHADI B D,KELLER T.Influence of the constant life diagram formulation on the fatigue life prediction of composite materials[J].International Journal of Fatigue,2010,32(4):659-669.
    [9]HARRIS B.Fatigue in composites[M].Cambridge:Woodhead Publishing Limited,2003:546-568.
    [10]KAWAI M,TERANUMA T.A multiaxial fatigue failure criterion based on the principal constant life diagrams for unidirectional carbon/epoxy laminates[J].Composites:Part A,2012,43(8):1252-1266.
    [11]JIN R,CHEN W,SUDJIANTO A.An efficient algorithm for constructing optimal design of computer experiments[J].Journal of Statistical Planning and Inference,2005,134(1):268-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700