5周高原训练期间优秀男子游泳运动员心率变异性指标的变化特点
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Changes in Heart Rate Variability of Elite Male Swimmers During Five-week Altitude Training
  • 作者:常玉 ; 高炳宏
  • 英文作者:Chang Yu;Gao Binghong;Shanghai University of Sport;
  • 关键词:高原训练 ; 优秀游泳运动员 ; 男子运动员 ; 心率变异性
  • 英文关键词:altitude training;;swimmers;;male athlete;;heart rate variability
  • 中文刊名:YDYX
  • 英文刊名:Chinese Journal of Sports Medicine
  • 机构:上海体育学院;
  • 出版日期:2019-03-25
  • 出版单位:中国运动医学杂志
  • 年:2019
  • 期:v.38
  • 基金:上海市科学技术委员会重点支撑项目(15490503300);; 上海市人类运动能力开发与保障重点实验室项目(上海体育学院,11DZ2261100)
  • 语种:中文;
  • 页:YDYX201903005
  • 页数:7
  • CN:03
  • ISSN:11-1298/R
  • 分类号:30-36
摘要
目的:探讨5周高原训练期间优秀男子游泳运动员心率变异性(HRV)相关指标的变化特点。方法:以7名上海队优秀男子游泳运动员为研究对象,分别于高原训练前1周,高原训练第1、3、4、5周和高原训练后1周的每周休息日,使用美国产Omega wave运动员实时机能状态综合诊断系统进行仰卧位状态的无创心率变异性测试,测试指标包括时域指标(SDNN、RMSSD、SDSD)和频域指标(TP、HF、LF、LF/HF)。周一晨起前卧位安静状态下测试晨脉(RHR)和血氧饱和度(SpO2%),晨起后空腹状态指尖采血测试肌酸激酶(CK)、血尿素(BU)。结果:高原训练后1周CK水平明显高于高原训练第4、5周(P<0.05)。与高原训练第1周相比,BU在高原训练第3、4周逐渐升高,但无显著性差异(P>0.05)。高原训练第1、3、4、5周的SpO2%均显著低于高原训练前1周(P<0.01)。高原训练第3、5周的RHR均明显低于高原训练第1周(P<0.05)。与高原训练前1周相比,高原训练第1周的HRV时域和频域指标下降(P>0.05),RMSSD、SDSD、HF分别下降18.60%、20.40%和12.60%,LF下降2.07%,HRV总体指标SDNN、TP分别下降6.47%、6.65%,LF/HF下降29.20%;高原训练第3周,HRV各指标有所回升,其中TP、HF较高原训练前1周相比分别增加14.23%、33.26%(P>0.05);高原训练第4周HRV各指标又开始下降,SDNN、RMSSD、SDSD、LF与高原前1周相比分别下降了16.42%(P<0.05)、21.89%、21.92%、35.31%,且均处于整个高原训练阶段最低值;高原训练第5周,HRV各指标开始回升,LF、LF/HF较高原训练前1周增加了27.17%和27.74%;高原训练后1周,SDNN、RMSSD、SDSD、TP、HF、LF较高原训练前1周分别下降了16.15%(P=0.053)、17.29%、17.71%、25.65%、30.82%、16.90%。结论:(1)5周高原训练过程中,优秀男子游泳运动员HRV指标呈波浪形的变化特点,其中高原训练前期主要受低氧环境的影响,高原训练后期主要受训练负荷的影响。(2)高原环境下,HRV可以反映随着高原缺氧和训练负荷的交互作用导致的自主神经系统调控能力波动性的变化,提示利用HRV来分析缺氧和训练负荷的交互作用对机体的影响具有一定的实践意义。
        Objective To investigate the change in the heart rate variability(HRV) of elite male swimmers during 5-week altitude training. Methods Seven elite male swimmers from the Shanghai team volunteered to undergo 5 weeks of altitude training in Kunming, Yunnan province(1890 m).Swimmers were tested HRV including the time domain– the standard deviation of the NN interval(SDNN),root mean square successive difference(RMSSD) and adjacent normal RR interval of the difference between the standard deviation(SDSD) and the frequency domain—total power(TP),high frequency(HF),low frequency(LF) and the ration of low frequency power and high frequency power(LF/HF) using Omega Wave,in Shanghai one week before and after the whole training,as well as in Kunming when finishing one-,three-,four-and five-week training. The resting heart rate(RHR) and oxygen saturation(SpO2%) were tested in a supine position on Monday mornings before getting up,while creatine kinase(CK) and blood urea(BU) were tested after getting up and before breakfast. Results The CK level after one-week training was significantly higher than after 4-and 5-week altitude training(P<0.05). The BU increased gradually after 3-and 4-week altitude training compared to after one-week,but not significantly(P>0.05). The average SpO2% after one-,three-,four-and five-week altitude training was significantly lower than before the training(P<0.01). The average RHR after 3-and 5-week training was significantly lower than after 1-week training(P<0.05). Compared with one week before the training,after one-week training,the time domain and frequency domain of the HRV decreased(P>0.05),with a decrease of 18.60%,20.40% and 12.60% in RMSSD,SDSD and HF,2.07% in LF,as well as 6.47% and 6.65% in SDNN and TP,together with 29.20% in LF/HF. Two weeks later,the various values of HRV began to rise,with an increase of 14.23% and 33.26% of TP and HF,compared to one week before(P>0.05). However,one week later,a decrease of 16.42%,21.89%,21.92% and 35.31% was observed in the SDNN,RMSSD,SDSD and LF,reaching the lowest level,compared to those of one week before. One week later,all the measurements began to rise again,with 27.17% and 27.74% increase of LF and LF/HF compared to one week before the training.One week after the total training,the average SDNN,RMSSD,SDSD,TP,HF and LF decreased16.15%(P=0.053),17.29%,17.71%,25.65%,30.82% and 16.90% compared to before the training.Conclusion During the altitude training,non-invasive indicators of heart rate variability display a typical wave shape,which is mainly affected by the anaerobic environment in the early stages,but by the training load in the later stages. In the plateau hypoxia environment,the heart rate variability can reflect the fluctuation of the regulation of the autonomic nervous system caused by the interaction of altitude hypoxia and training load. The results suggest that it is of practical significance to use the heart rate variability to analyze the interaction between hypoxia and training load on the body.
引文
[1]崔小珠,王人卫.应用心率变异性指标评价优秀耐力运动员机能状态研究进展[J].体育科学,2015,35(12):75-79.
    [2] Buchheit M. Monitoring training status with HR measures:do all roads lead to Rome?[J]. Front Physiol,2014,5:73.
    [3] Carter JB,Banister EW,Blaber AP. The effect of age and gender on heart rate variability after endurance training[J]. Med Sci Sports Exerc,2003,35(8):1333-1340.
    [4] Buchheit M,Racinais S,Bilsborough JC,et al. Monitoring fitness, fatigue and running performance during a pre-season training camp in elite football players[J]. J Sci Med Sport,2013,16(6):550-555.
    [5] Achten J,Jeukendrup AE. Heart rate monitoring:applications and limitations[J]. Sports Med,2003,33(7):517-538.
    [6]刘凌,曹佩江,徐岩,等.心率变异性各指标在运动适应性评定中的应用[J].体育与科学,2008,29(06):60-62.
    [7]杨晓强.拳击运动员心率变异性、心电图变异及Ω电位各指标对板块训练的指导作用[J].湖北体育科技,2013,32(01):88-90.
    [8] Parrado E,Garcia MA,Ramos J,et al. Comparison of Omega Wave System and Polar S810i to detect R-R intervals at rest[J]. Int J Sports Med,2010,31(5):336-341.
    [9]高炳宏,陈佩杰,李之俊.运动与心率变异性[J].中国运动医学杂志,2003,22(05):490-492.
    [10] Risk M,Bril V,Broadbrige C,et al. Heart rate variability measurement in diabetic neuropathy:review of methods[J]. Diabetes Technol Ther,2001,3(1):63-76.
    [11]朱莎,丁宁伟,刘凌.高原及低氧环境对心率变异性影响研究进展[J].中国运动医学杂志,2006,29(03):359-362.
    [12]李之俊,高炳宏.男子赛艇运动员有氧代谢能力与心率变异性[J].中国运动医学杂志,2006,25(02):232-233.
    [13] Gudmundsson G,Gudbjartsson T. High altitude sicknessreview[J]. Laeknabladid,2009,95(6):441-447.
    [14]马磊,黄文英,程其练,等.心脏定量负荷试验对不同人群中老年女性心率变异性的影响[J].体育科学,2008,28(12):50-55.
    [15] Cornolo J,Mollard P,Brugniaux JV,et al. Autonomic control of the cardiovascular system during acclimatization to high altitude:effects of sildenafil[J]. J Appl Physiol(1985),2004,97(3):935-940.
    [16] Bernardi L,Passino C,Spadacini G,et al. Cardiovascular autonomic modulation and activity of carotid baroreceptors at altitude[J]. Clin Sci(Lond),1998,95(5):565-573.
    [17] Liu XX, Lu LL, Zhong CF, et al. Analysis of heart rate variability during acute exposure to hypoxia[J].Space Med Med Eng(Beijing),2001,14(5):328-331.
    [18] Zuzewicz K, Biernat B, Kempa G, et al. Heart rate variability in exposure to high altitude hypoxia of short duration[J]. Int J Occup Saf Ergon,1999,5(3):337-346.
    [19]隆敏,覃军,黄岚,等.男性青年急进高原初期心率变异性的变化及意义[J].第三军医大学学报,2008,30(09):855-857.
    [20] Mazzuero G. Altitude and the autonomic nervous system[J]. Ital Heart J Suppl,2001,2(8):845-849.
    [21] Passino C,Bernardi L,Spadacini G,et al. Autonomic regulation of heart rate and peripheral circulation:comparison of high altitude and sea level residents[J]. Clin Sci(Lond),1996,91 Suppl:81-83.
    [22] Plews DJ, Laursen PB, Kilding AE, et al. Heart-rate variability and training-intensity distribution in elite rowers[J]. Int J Sports Physiol Perform,2014,9(6):1026-1032.
    [23] Schmitt L,Hellard P,Millet GP,et al. Heart rate variability and performance at two different altitudes in welltrained swimmers[J]. Int J Sports Med,2006,27(03):226-231.
    [24] Iellamo F,Legramante JM,Pigozzi F,et al. Conversion from vagal to sympathetic predominance with strenuous training in high-performance world class athletes[J]. Circulation,2002,105(23):2719-2724.
    [25] Pichot V, Roche F, Gaspoz JM, et al. Relation between heart rate variability and training load in middledistance runners[J]. Med Sci Sports Exerc,2000,32(10):1729-1736.
    [26]赵敬国.增量运动过程中心率变异性的研究[J].山东体育科技,1997,19(03):32-35.
    [27] Kaikkonen P, Nummela A, Rusko H. Heart rate variability dynamics during early recovery after different endurance exercises[J]. Eur J Appl Physiol,2007,102(1):79-86.
    [28] Sztajzel J,Jung M,Sievert K,et al. Cardiac autonomic profile in different sports disciplines during all-day activity[J]. J Sports Med Phys Fitness,2008,48(4):495-501.
    [29] Green D J, Spence A, Halliwill J R, et al. Exercise and vascular adaptation in asymptomatic humans[J]. Exp Physiol,2011,96(2):57-70.
    [30]黄彩华,归予恒,张漓,等.男子散打运动员教学比赛前后心率变异性变化分析[J].中国运动医学杂志,2011,30(12):1138-1142.
    [31] Gibelli G, Fantoni C, Anza C, et al. Arrhythmic risk evaluation during exercise at high altitude in healthy subjects:role of microvolt T-wave alternans[J]. Pacing Clin Electrophysiol,2008,31(10):1277-1283.
    [32]宋昭,杨来启,贾婷,等.高原驻训对某快反部队战士自主神经功能的影响[J].西北国防医学杂志,2016,37(05):318-321.
    [33]房昶.高原训练对7-16岁游泳运动员心血管自主神经调节功能的影响[D].北京体育大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700