基于新型形貌的纳米结构氧化锌高性能室温气体传感器(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High performance room temperature gas sensor based on novel morphology of zinc oxide nanostructures
  • 作者:Naila ; ZUBAIR ; Khalida ; AKHTAR
  • 英文作者:Naila ZUBAIR;Khalida AKHTAR;National Center of Excellence in Physical Chemistry, University of Peshawar;
  • 关键词:氧化锌纳米结构 ; 气体传感器 ; 敏感性 ; 响应/恢复时间
  • 英文关键词:zinc oxide nanostructures;;gas sensor;;sensitivity;;response/recovery time
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:National Center of Excellence in Physical Chemistry, University of Peshawar;
  • 出版日期:2019-01-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 语种:英文;
  • 页:ZYSY201901015
  • 页数:14
  • CN:01
  • ISSN:43-1239/TG
  • 分类号:149-162
摘要
通过简单快速且无添加剂的氨水可控沉淀法在水溶液中制备具有新型形貌和均匀纳米结构的氧化锌粉末。用SEM、XRD、FTIR、TG/DTA等检测手段表征所制备的固体粉末。FTIR分析结果显示:纳米结构形貌对所制备材料的红外光谱影响较小。将原始态(ZnO-AP)、烧结态(ZnO-Cal)和商业(ZnO-Com)纳米结构ZnO制作成气敏元件,并在室温(29℃)下检测其对氨气、丙酮和酒精的气敏性能。结果表明,ZnO-AP和ZnO-Cal气敏元件对1×10~(-6)的氨气表现出优良的气敏性能和可重复性,灵敏度分别为63.79%和66.87%,响应和恢复时间分别为13和3 s;这是由于合成的纳米结构具有独特的形貌和优异的形状与尺寸均匀性。相反,ZnO-Com气敏元件对浓度200×10~(-6)以下的氨气没有响应。另外,ZnO-Cal在室温下对氨气的选择性高于对丙酮和酒精的选择性。总之,合成的ZnO对氨气的最低检测限为1×10~(-6),表明其具有优异的气敏特性。
        Zinc oxide uniform nanostructures with novel morphologies were synthesized through simple and fast ammonia based controlled precipitation method in aqueous media and in the absence of any additive. Selected batches of the synthesized solids were characterized by SEM, XRD, FTIR and TG/DTA. FTIR analysis revealed that the morphology of nanostructures had little effect on their IR spectral profile of the synthesized material. The as-prepared, calcined and commercial ZnO nanostructures(ZnO-AP, ZnO-Cal and ZnO-Com) were then employed as gas sensors for the detection of ammonia, acetone and ethanol. ZnO-AP and Zn O-Cal based sensors showed superior and reproducible performance towards 1×10~(-6) ammonia with gas response of 63.79% and 66.87% and response/recovery time of 13 and 3 s, respectively, at room temperature(29 ℃). This was attributed to the unique morphology and remarkable uniformity in shape and size of the synthesized nanostructures. In contrast, the ZnO-Com based sensor did not respond to ammonia concentration less than 200×10~(-6). In addition, ZnO-Cal showed high selectivity to ammonia as compared to acetone and ethanol at room temperature. Moreover, the lowest detection limit was 1×10~(-6), which demonstrates excellent ammonia sensing characteristics of the synthesized ZnO.
引文
[1]PRABAKARAN S,RAYAPPAN J B B.Gas sensing mechanism of metal oxides:The role of ambient atmosphere,type of semiconductor and gases-A review[J].Science Jet,2015,4:126(1-18).
    [2]WU Shui-sheng,JIA Qing-ming,SUN Yan-lin,SHAN Shao-yun,JIANG Li-hong,WANG Ya-ming.Microwave-hydrothermal preparation of flower-like ZnO microstructure and its photocatalytic activity[J].Transactions of Nonferrous Metals Society China,2012,22:2465-2470.
    [3]YANG Le-jiao,QIU De-liang,YU Fei,CHEN Shou-gang,YINYan-sheng.3D flowerlike ZnO micro-nanostructures via sitespecific second nucleation in the zinc-ethylenediaminehexamethylenetetramine tertiary system[J].Material Science in Semiconductor Processing,2011,14:193-198.
    [4]PATIL L A,SONAWANE L S,PATIL D G.Room temperature ammonia gas sensing using MnO2-modified ZnO thick film resistors[J].Journal of Modern Physics,2011,2:1215-1221.
    [5]CHEN Tai-You,CHEN Huey-Ing,HSU Chi-Shiang,HUANGChien-Chang,WU Jian-Sheng,CHOU Po-Cheng,LIU Wen-Chau.Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration[J].Sensors and Actuators B,2015,221:491-498.
    [6]ANDRE R S,KWAK D,DONG Qiu-chen,ZHONG Wei,CORREAD S,MATTOSO L H C,LEI Yu.Sensitive and selective NH3monitoring at room temperature using ZnO ceramic nanofibers decorated with poly(styrene sulfonate)[J].Sensors,2018,18:1058(1-13).
    [7]MENG Fan-li,HOU Nan-nan,JIN Zhen,SUN Bai,LI Wen-qing,XIAO Xiang-heng,WANG Chen,LI Min-qiang,LIU Jin-huai.Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures[J].Sensors and Actuators B,2015,219:209-217.
    [8]MENG Fan-li,ZHENG Han-xiong,CHANG Yuan-long,ZHAOYong,LI Min-qiang,WANG Chen,SUN Yu-feng,LIU Jin-huai.One-step synthesis of Au/SnO2/RGO nanocomposites and their VOCsensing properties[J].IEEE Transactions on Nanotechnology,2018,17:212-219.
    [9]SONG Young Geun,SHIM Young-Seok,KIM Sangtae,HAN Soo Deok,MOON Hi Gyu,NOH Myoung Sub,LEE Kwangjae,LEE Hae Ryong,KIM Jin-Sang,JU Byeong-Kwon,KANG Chong-Yun.Downsizing gas sensors based on semiconducting metal oxide:Effects of electrodes on gas sensing properties[J].Sensors and Actuators B,2017,248:949-956.
    [10]WEI Ang,WANG Zhao,LIU Hua-pan,LI Wei-wei,XIONG Lie,DONG Xiao-chen,HUANG Wei.Room-temperature NH3 gas sensor based on hydrothermally grown ZnO nanorods[J].Chinese Physics Letters,2011,28:1-4.
    [11]SAROCH M,SRIVASTAWA S,FINK D.CHANDRA A.Room temperature ammonia gas sensing using mixed conductor based TEMPOS structures[J].Sensors,2008,8:6355-6377.
    [12]BHASKER R V,NIMAL A T,PARMAR Y,SHARMA M U,SREENIVAS K.GUPTA V.Cross-sensitivity and selectivity studies on ZnO surface acoustic wave ammonia sensor[J].Sensors and Actuators B,2010,147:517-524.
    [13]ZENG Yi,LOU Zheng,WANG Li-li,ZOU Bo,ZHANG Tong,ZHENG Wei-tao,ZOU Guan-tian.Enhanced ammonia sensing performances of Pd-sensitized flowerlike ZnO nanostructure[J].Sensors and Actuators B,2011,156:395-400.
    [14]LV H,SANG D D,LI H D,DU X B,LI D M,ZOU G T.Thermal evaporation synthesis and properties of ZnO nano/microstructures using carbon group elements as the reducing agents[J].Nanoscale Research Letters,2010,5:620-624.
    [15]ZHANG Jian-jiao,GUO Er-jun,WANG Li-ping,YUE Hong-yan,CAO Guo-jian,SONG Liang.Effect of annealing treatment on morphologies and gas sensing properties of ZnO nanorods[J].Transactions of Nonferrous Metals Society of China,2014,24:736-742.
    [16]PU Xi-peng,ZHANG De-feng,YI Xiu-jie,SHAO Xin,LI Wen-zhi,SUN Ming-yan,LI Lei,QIAN Xian-hua.Rapid chemical synthesis and optical properties of ZnO ellipsoidal nanostructures[J].Advanced Powder Technology,2010,21:344-349.
    [17]HAQ I U,AZAD A M.Experimental artifacts for morphological tweaking of chemical sensor materials:Studies on ZnO[J].Sensors,2012,12:8259-8277.
    [18]ZHANG Jing-wei,WANG Wei,ZHU Peng-li,CHEN Jian-min,ZHANG Zhi-jun,WU Zhi-shen.Synthesis of small diameter ZnOnanorods via refluxing route in alcohol-water mixing solution containing zinc salt and urea[J].Materials Letters,2007,61:592-594.
    [19]AKHTAR K,HAQ I U,MALOOK K.Gas sensing properties of semiconducting-copper oxide nanospheroids[J].Powder Technology,2015,283:505-511.
    [20]HEIDARI A,YOUNESI H.Controllable synthesis of flower-like ZnO nanostructure with hydrothermal method[J].IJE Transactions B:Applications,2009,22:283-290.
    [21]LIU Hong-yu,ZHANG Huan,WANG Jie,WEI Jun-fu.Effect of temperature on the size of biosynthesized silver nanoparticle:Deep insight into microscopic kinetics analysis[J].Arabian Journal of Chemistry,2017.https://doi.org/10.1016/j.arabjc.2017.09.004.
    [22]MENG Fan-li,ZHENG Han-xiong,SUN Yu-feng,LI Min-qiang,LIU Jin-huai.Trimethylamine sensors based on Au-modified hierarchical porous single-crystalline ZnO nanosheets[J].Sensors,2017,17:1-13.
    [23]MENG Fan-li,HOU Nan-nan,GE Sheng,SUN Bai,JIN Zhen,SHEN Wei,KONG Ling-tao,GUO Zheng,SUN Yu-feng,WU Hao,WANG Chen,LI Min-qiang.Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds(VOCs)[J].Journal of Alloys and Compounds,2015,626:124-130.
    [24]WANG Yin-sheng,MURAMATSU A,SUGIMOTO T.FTIR analysis of well-defined Fe2O3 particles[J].Colloids and Surfaces A:Physicochemical Engineering Aspects,1998,134:281-297.
    [25]ANAS S,MUKUNDAN P,SANOJ A M,MANGALARAJ V R.Synthesis of ZnO based nanopowders via a non-hydrolytic sol gel technique and their densification behavior and varistor properties[J].Processing and Application of Ceramics,2010,4:7-14.
    [26]UMAR A,RAHMAN M M,AL-HAJRY A,HAHN Y B.Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures[J].Talanta,2009,78:284-289.
    [27]SARASWATHI M,CLAUDE A,DEVI K N,SEVVANTHI P.Growth of zinc oxide crystals by accelerated evaporation technique from supersaturated solutions[J].International Journal of ChemTech Research,2012,4:1343-1349.
    [28]KHAN Y,DURRANI S K,MEHMOOD M,AHMAD J,KHAN M R,FIRDOUS S.Low temperature synthesis of fluorescent ZnOnanoparticles[J].Applied Surface Science,2010,257:1756-1761.
    [29]CHANDRAPPA K G,VENKATESHA T V,VATHSALA K,SHIVAKUMARA C.A hybrid electrochemical-thermal method for the preparation of large ZnO nanoparticles[J].Journal of Nanoparticle Research,2010,12:2667-2678.
    [30]WAHAB Rizwan,KIM Young-Soon,SHIN Hyung-Shik.Synthesis,characterization and effect of pH variation on zinc oxide nanostructures[J].Materials Transactions,2009,50:2092-2097.
    [31]JEGAN A,RAMASUBBU A,KARUNAKARAN K,VASANTHKUMAR S.Synthesis and characterization of zinc oxide-agar nanocomposite[J].International Journal of Nano Dimension,2012,2:171-176.
    [32]ZHANG Shao-Lin,BYUN Hyung-Gi,LIM Jeong-Ok,HUHJeung-Soo,LEE Wooyoung.Controlled synthesis of ZnOnanostructures for sub-ppm-level VOC detection[J].IEEE Sensors Journal,2012,12:3149-3155.
    [33]KUO Chia-Liang,WANG Cheng-Li,KO Horng-Huey,HWANGWeng-Sing,CHANG Kuo-Meng,LI Wang-Long,HUANGHong-Hsin,CHANG Yen-Hwei,WANG Moo-Chin.Synthesis of zinc oxide nanocrystalline powders for cosmetic applications[J].Ceramics International,2010,36:693-698.
    [34]BOZ I,KALUZA S,BOROGLU M S,MUHLER M.Synthesis of high surface area ZnO powder by continuous precipitation[J].Materials Research Bulletin,2012,47:1185-1190.
    [35]SINGH A K.Synthesis,characterization,electrical and sensing properties of ZnO nanoparticles[J].Advanced Powder Technology,2010,21:609-613.
    [36]GHADERI A,ELAHI S M,SOLAYMANI S,NASERI M,AHMADIRAD M,BAHRAMI S,KHALILI A E.Thickness dependence of the structural and electrical properties of ZnOthermal-evaporated thin films[J].Pramana-Journal of Physics,2011,77:1171-1178.
    [37]BEDI R K,SINGH I.Room-temperature ammonia sensor based on cationic surfactant-assisted nanocrystalline CuO[J].ACS Applied Materials&Interfaces,2010,2:1361-1368.
    [38]PONNUSAMY D,MADANAGURUSAMY S.Nanostructured ZnOfilms for room temperature ammonia sensing[J].Journal of Electronic Materials,2014,43:3211-3216.
    [39]VENKATESH P S,DHARMARAJ P,PURUSHOTHAMAN V,RAMAKRISHNAN V,JEGANATHAN K.Point defects assisted NH3 gas sensing properties in ZnO nanostructures[J].Sensors and Actuators B,2015,212:10-17.
    [40]CHANG Shoou Jin,WENG Wen Yin,HSU Cheng Liang,HSUEHTing Jen.High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nano-particles[J].Nano Communication Networks,2010,1:283-288.
    [41]BHOWMIK B,HAZARA A,DUTTA K,BHATTACHARYYA P.Repeatability and stability of room temperature acetone sensor based on TiO2 nanotubes:Influence of stoichiometry variation[J].IEEETransactions on Device and Materials Reliability,2014,14:961-967.
    [42]WANG Yu-de,CHEN Jing-bo,WU Xing-hui.Preparation and gas sensing properties of perovskite type SrFeO3 oxide[J].Materials Letters 2001,49:361-364.
    [43]XIAO Yuan-hua,LU Ling-zhen,ZHANG Ai-qin,ZHANG Yong-hui,SUN Li,HUO Lei,LI Feng.Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets:High percentage of exposed(100)facets working together with surface modification with Pd nanoparticles[J].ACS Applied Materials&Interfaces,2012,4:3797-3804.
    [44]WANG Cheng-xiang,YIN Long-wei,ZHANG Lu-yuan,XIANGDong,GAO Rui.Metal oxide gas sensors:Sensitivity and influencing factors[J].Sensors,2010,10:2088-2106.
    [45]RENITTA A,VIJAYALAKSHMI K A.Novel room temperature ethanol sensor based on catalytic Fe activated porous WO3microspheres[J].Catalysis Communications,2016,73:58-62.
    [46]ROY S,BANERJEE N,SARKAR C K,BHATTACHARYYA P.Development of an ethanol sensor based on CBD grown ZnOnanorods[J].Solid-State Electronics,2013,87:43-50.
    [47]ZHOU Lie-jing,LI Chun-guang,ZOU Xio-xin,ZHAO Jun,JINPan-pan,FENG Liang-liang,FAN Mei-hong,LI Guo-dong.Porous nanoplate-assembled CdO/ZnO composite microstructures:A highly sensitive material for ethanol detection[J].Sensors and Actuators B,2014,197:370-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700