蛋白磷酸化修饰在保卫细胞响应非生物胁迫中的作用机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Insights of Protein Phosphorylation Modification in Stomatal Guard Cells under Abiotic Stress
  • 作者:尹赜鹏 ; 莫江玲 ; 齐明芳 ; 孟思达 ; 李天来
  • 英文作者:YIN Ze-peng;MO Jiang-ling;QI Ming-fang;MENG Si-da;LI Tian-lai;College of Horticulture/Key Laboratory of Protected Horticulture of Ministry of Education,Shenyang Agricultural University;
  • 关键词:磷酸化 ; 保卫细胞 ; 气孔运动 ; 信号传导 ; 非生物胁迫
  • 英文关键词:phosphorylation;;guard cell;;stomata movement;;signaling;;biotic stresses
  • 中文刊名:SYNY
  • 英文刊名:Journal of Shenyang Agricultural University
  • 机构:沈阳农业大学园艺学院/设施园艺省部共建教育部重点实验室;
  • 出版日期:2018-12-15
  • 出版单位:沈阳农业大学学报
  • 年:2018
  • 期:v.49;No.197
  • 基金:国家自然科学基金青年项目(31801848);; 中国博士后科学基金项目(2018M631877);; 国家现代农业产业技术体系建设专项资金项目(CARS-25);; 辽宁省重大科技攻关项目(2011215003);; 沈阳市农业科技攻关专项项目(F11-092-3-00);; 沈阳市科技计划项目(17-143-3-00);; 辽宁省教育厅重点实验室项目(LZ2015064)
  • 语种:中文;
  • 页:SYNY201806017
  • 页数:7
  • CN:06
  • ISSN:21-1134/S
  • 分类号:122-128
摘要
蛋白质的磷酸化是一种重要的蛋白质翻译后修饰方式。蛋白质的磷酸化与去磷酸化在植物气孔运动过程中起着关键的调节作用。目前,保卫细胞磷酸化蛋白质组学的主要研究内容包括鉴定磷酸化蛋白、定位磷酸化位点、定量磷酸化水平,进而揭示磷酸化和去磷酸化在植物气孔运动过程中所起的生物学功能。Open Stomata 1 (OST1)/SnRK2.6是蔗糖非酵解型蛋白激酶SnRK2(sucrose non-fermenting receptor kinase)家族的成员,具有典型的丝氨酸/苏氨酸蛋白激酶保守域,并主要在保卫细胞中表达。当植物处于正常生长环境时,ABA的受体PYR/PYL/RCAR不能作用于蛋白磷酸酶2C (PP2Cs,protein phosphatase 2Cs),PP2Cs通过与OST1互作抑制OST1的活性;在逆境胁迫下,PP2Cs解除对OST1蛋白激酶的抑制,随后OST1蛋白激酶启动对下游信号组分的调控作用并引起气孔运动。通过综述磷酸化修饰的定性和定量分析方法,以及蛋白质磷酸化修饰在保卫细胞应对非生物胁迫中的作用机制,提出了保卫细胞磷酸化蛋白组学领域目前存在的挑战和研究前景,旨在为深入了解保卫细胞应答非生物胁迫的气孔运动机制提供参考和新方向。
        Protein phosphorylation modification is recognized as the most important post-translational modification. Protein phosphorylation and dephosphorylation in guard cells under abiotic stress play essential roles in stomatal movement under stress conditions. Recently, the main research contents of phosphorylation proteomics in guard cells include identification of phosphorylated proteins, localization of phosphorylation sites, quantification of phosphorylation levels, and revealing the biological functions of phosphorylation and dephosphorylation in stomata movement. Open Stomata 1(OST1)/SnRK2.6, a major SnRK2-type protein kinase, has a typical conserved domain of Ser/Thr protein kinase, and it mainly expresses in guard cells. ABA receptor(PYR/PYL/RCAR) can't interact with Protein Phosphatase 2Cs(PP2Cs) under normal condition, and inhibit the activity of SnRK2.6(OST1) through interact with it. Under stress conditions, protein phosphatase type 2C relieves the inhibition of protein kinase OST1, which activates the regulation of the downstream components and induces stomatal movement. This review summarized the qualitative and quantitative analysis of phosphorylation modification, and mechanism of protein phosphorylation modification in protecting cells in response to abiotic stress. In addition, we also proposed provided some proposals for further research on guard cell phosphoprotomics. Our study aims are to provide a reference and indicate new directions for the mechanism study of stomata movement in response to abiotic stress.
引文
[1] SAWINSKI K,MERSMANN S,ROBATZEK S,et al.Guarding the green:pathways to stomatal immunity[J].Molecular Plant-microbe Interactions,2013,26(6):626-632.
    [2] THOR K,PEITER E.Cytosolic calcium signals elicited by the pathogen-associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature[J].New Phytologist,2014,204(4):873-881.
    [3] SINGH R,PARIHAR P,SINGH S,et al.Reactive oxygen species signaling and stomatal movement:Current updates and future perspectives[J].Redox Biology,2017,11:213-218.
    [4] ZHU M,DAI S,MCCLUNG S,et al.Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics[J].Molecular&Cellular Proteomics,2009,8(4):752-766.
    [5] LEE S C,LUAN S.ABA signal transduction at the crossroad of biotic and abiotic stress responses[J].Plant,Cell&Environment,2012,35(1):53-60.
    [6] ASSMANN S M.OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells[J].Trends in Plant Science,2003,8(4):151-153.
    [7] PEI Z M,KUCHITSU K,WARD J M,et al.Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants[J].The Plant Cell,1997,9(3):409-423.
    [8] SCHROEDER J I,KWAK J M,ALLEN G J.Guard cell abscisic acid signaling and engineering drought hardiness in plants[J].Nature,2001,410(6826):327-30.
    [9] GRENNAN A K.Protein S-nitrosylation:potential targets and roles in signal transduction[J].Plant Physiology,2007,144(3):1237-1239.
    [10] WASZCZAK C,AKTER S,JACQUES S,et al.Oxidative post-translational modifications of cysteine residues in plant signal transduction[J].Journal of Experimental Botany,2015,66(10):2923-2934.
    [11] LINDERMAYR C,SELL S,MULLER B,et al.Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide[J].The Plant Cell,2010,22(8):2894-2907.
    [12] STECKER K E,MINKOFF B B,SUSSMAN M R.Phosphoproteomic analyses reveal early signaling events in the osmotic stress response[J].Plant Physiology,2014,165(3):1171-1187.
    [13] ZHU M,ZHU N,SONG W,et al.Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells[J].The Plant Journal,2014,78(3):491-515.
    [14] ZOU J J,LI X D,RATNASEKERA D,et al.Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2homeostasis in stomatal guard cells under drought stress[J].The Plant Cell,2015,27(5):1445-1460.
    [15] MA Y,SZOSTKIEWICZ I,KORTE A,et al.Regulators of PP2C phosphatase activity function as abscisic acid sensors[J].Science,2009,324(5930):1064-1068.
    [16] PARK S Y,FUNG P,NISHIMURA N,et al.Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J].Science,2009,324(5930):1068-1071.
    [17] YIN Y,ADACHI Y,NAKAMURA Y,et al.Involvement of OST1 protein kinase and PYR/PYL/RCAR receptors in methyl jasmonate-induced stomatal closure in Arabidopsis guard cells[J].Plant and Cell Physiology,2016,57(8):1779-1790.
    [18] WANG P,SONG C P.Guard-cell signalling for hydrogen peroxide and abscisic acid[J].New Phytologist,2008,178(4):703-718.
    [19] LAOHAVISIT A,BROWN A T,CICUTA P,et al.Annexins:components of the calcium and reactive oxygen signaling network[J].Plant Physiology,2010,152(4):1824-1829.
    [20] SHI K,LI X,ZHANG H,et al.Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2-induced stomatal movement in tomato[J].New Phytologist,2015,208(2):342-353.
    [21] LI X,SUN Z,SHAO S,et al.Tomato–Pseudomonas syringae interactions under elevated CO2concentration:the role of stomata[J].Journal of Experimental Botany,2014,66(1):307-316.
    [22] KUDLA J,BATISTIC O,HASHIMOTO K.Calcium signals:the lead currency of plant information processing[J].The Plant Cell,2010,22(3):541-563.
    [23] DING Y,LI H,ZHANG X,et al.OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J].Developmental Cell,2015,32(3):278-289.
    [24] SCHROEDER J I,KWAK J M,ALLEN G J.Guard cell abscisic acid signalling and engineering drought hardiness in plants[J].Nature,2001,410(6826):327.
    [25] MUSTILLI A C,MERLOT S,VAVASSEUR A,et al.Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J].The Plant Cell,2002,14(12):3089-3099.
    [26] NAKASHIMA K,YAMAGUCHI-SHINOZAKI K.ABA signaling in stress-response and seed development[J].Plant Cell Reports,2013,32(7):959-970.
    [27] ZHANG T,CHEN S,HARMON A C.Protein phosphorylation in stomatal movement[J].Plant Signaling&Behavior,2014,9(11):e972845.
    [28] LEE S C,LIM C W,LAN W,et al.ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels[J].Molecular Plant,2013,6(2):528-538.
    [29] MUNEMASA S,HAUSER F,PARK J,et al.Mechanisms of abscisic acid-mediated control of stomatal aperture[J].Current Opinion in Plant Biology,2015,28:154-162.
    [30] MULLER H M,SCHAFER N,BAUER H,et al.The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1anion channel[J].New Phytologist,2017,216(1):150-162.
    [31] VAHISALU T,KOLLIST H,WANG Y F,et al.SLAC1 is required for plant guard cell S-type anion channel function in stomatal signaling[J].Nature,2008,452(7186):487.
    [32] GEIGER D,SCHERZER S,MUMM P,et al.Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair[J].Proceedings of the National Academy of Sciences,2009,106(50):21425-21430.
    [33] ACHARYA B R,JEON B W,ZHANG W,et al.Open Stomata 1(OST1)is limiting in abscisic acid responses of Arabidopsis guard cells[J].New Phytologist,2013,200(4):1049-1063.
    [34] BRANDT B,BRODSKY D E,XUE S,et al.Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action[J].Proceedings of the National Academy of Sciences,2012,109(26):10593-10598.
    [35] VAHISALU T,PUZORJOVA I,BROSCHE M,et al.Ozone-triggered rapid stomatal response involves the production of reactive oxygen species,and is controlled by SLAC1 and OST1[J].The Plant Journal,2010,62(3):442-453.
    [36] GRONDIN A,RODRIGUES O,VERDOUCQ L,et al.Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation[J].The Plant Cell,2015,27(7):1945.
    [37] HUBBARD K E,SIEGEL R S,VALERIO G,et al.Abscisic acid and CO2signalling via calcium sensitivity priming in guard cells,new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus–response analyses[J].Annals of Botany,2011,109(1):5-17.
    [38] LIANG S,LU K,WU Z,et al.A link between magnesium-chelatase H subunit and sucrose nonfermenting 1(SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response to abscisic acid[J].Journal of Experimental Botany,2015,66(20):6355-6369.
    [39] MEYER S,MUMM P,IMES D,et al.AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells[J].The Plant Journal,2010,63(6):1054-1062.
    [40] IMES D,MUMM P,BOHM J,et al.Open stomata 1(OST 1)kinase controls R–type anion channel QUAC 1 in Arabidopsis guard cells[J].The Plant Journal,2013,74(3):372-382.
    [41] KIM T H,BOHMER M,HU H,et al.Guard cell signal transduction network:advances in understanding abscisic acid,CO2and Ca2+signaling[J].Annual Review of Plant Biology,2010,61:561-591.
    [42] YE W,MUROYAMA D,MUNEMASA S,et al.Calcium-dependent protein kinase,CPK6,positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis[J].Plant Physiology,2013,163(2):591-599.
    [43] ZHANG G,UEBERHEIDE B M,WALDEMARSON S,et al.Protein quantitation using mass spectrometry[J].Methods in Molecular Biology,,2010,673:211-222.
    [44] FUJII H,VERSLUES P E,ZHU J K.Identification of two protein kinases required for abscisic acid regulation of seed germination,root growth,and gene expression in Arabidopsis[J].The Plant Cell,2007,19(2):485-494.
    [45] JAMMES F,SONG C,SHIN D,et al.MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling[J].Proceedings of the National Academy of Sciences,2009,106(48):20520-20525.
    [46] XIE Y,MAO Y,ZHANG W,et al.Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis[J].Plant Physiology,2014,165(2):759-773.
    [47] SIRICHANDRA C,GU D,HU H C,et al.Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase[J].Febs Letters,2009,583(18):2982-2986.
    [48] ZHU M,SIMONS B,ZHU N,et al.Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging[J].Journal of Proteomics,2010,73(4):790-805.
    [49] ROUX M M,RADEKE M J,GOEL M,et al.2DE identification of proteins exhibiting turnover and phosphorylation dynamics during sea urchin egg activation[J].Developmental Biology,2008,313(2):630-647.
    [50] SCHEVING R,WITTIG I,HEIDE H,et al.Protein S-nitrosylation and denitrosylation in the mouse spinal cord upon injury of the sciatic nerve[J].Journal of Proteomics,2012,75(13):3987-4004.
    [51] STEINBERG T H,TOP K P O,BERGGREN K N,et al.Rapid and simple single nanogram detection of glycoproteins in polyacrylamide gels and on electroblots[J].Proteomics:International Edition,2001,1(7):841-855.
    [52] SCHULENBERG B,AGGELER R,BEECHEM J M,et al.Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye[J].Journal of Biological Chemistry,2003,278(29):27251-27255.
    [53] LENMAN M,SORENSSON C,ANDREASSON E.Enrichment of phosphoproteins and phosphopeptide derivatization identify universal stress proteins in elicitor-treated Arabidopsis[J].Molecular Plant-Microbe Interactions,2008,21(10):1275-1284.
    [54] GUO J,GAFFREY M J,SU D,et al.Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications[J].Nature Protocols,2014,9(1):64.
    [55] RUSH J,MORITZ A,LEE K A,et al.Immunoaffinity profiling of tyrosine phosphorylation in cancer cells[J].Nature Biotechnology,2005,23(1):94.
    [56] ZHANG Y,WOLF-YADLIN A,ROSS P L,et al.Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules[J].Molecular&Cellular Proteomics,2005,4(9):1240-1250.
    [57] FILA J,HONYS D.Enrichment techniques employed in phosphoproteomics[J].Amino Acids,2012,43(3):1025-1047.
    [58] WANG Z G,LV N,BI W Z,et al.Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis[J].ACS Applied Materials&Interfaces,2015,7(16):8377-8392.
    [59] THINGHOLM T E,JENSEN O N.Enrichment and Characterization of Phosphopeptides by Immobilized Metal Affinity ChroMatography(IMAC)and Mass Spectrometry[M]//Phospho-Proteomics:Humana Press,2009:47-56.
    [60] THINGHOLM T E,JENSEN O N,ROBINSON P J,et al.SIMAC(sequential elution from IMAC),a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides[J].Molecular&Cellular Proteomics,2008,7(4):661-671.
    [61] SILVA-SANCHEZ C,LI H,CHEN S.Recent advances and challenges in plant phosphoproteomics[J].Proteomics,2015,15(5-6):1127-1141.
    [62] GYGI S P,RIST B,GERBER S A,et al.Quantitative analysis of complex protein mixtures using isotope-coded affinity tags[J].Nature Biotechnology,1999,17(10):994.
    [63] GLIBERT P,MEERT P,VAN STEENDAM K,et al.Phospho-iTRAQ:assessing isobaric labels for the large-scale study of phosphopeptide stoichiometry[J].Journal of Proteome Research,2015,14(2):839-849.
    [64] THELEN J J,PECK S C.Quantitative proteomics in plants:choices in abundance[J].The Plant Cell,2007,19(11):3339-3346.
    [65] MINKOFF B B,STECKER K E,SUSSMAN M R.Rapid phosphoproteomic effects of ABA on wildtype and ABA receptor-deficient A. thaliana mutants[J].Molecular&Cellular Proteomics,2015,14(5):1169.
    [66] GRUHLER A,SCHULZE W X,MATTHIESEN R,et al.Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry[J].Molecular&Cellular Proteomics,2005,4(11):1697-1709.
    [67] ENGELSBERGER W R,ERBAN A,KOPKA J,et al.Metabolic labeling of plant cell cultures with KNO3as a tool for quantitative analysis of proteins and metabolites[J].Plant Methods,2006,2(1):14.
    [68] IPPEL J H,POUVREAUL,KROEF T,et al.In vivo uniform 15N‐isotope labelling of plants:Using the greenhouse for structural proteomics[J].Proteomics,2004,4(1):226-234.
    [69] XIE F,LIU T,QIAN W J,et al.Liquid chromatography-mass spectrometry-based quantitative proteomics[J].Journal of Biological Chemistry,2011,286(29):25443.
    [70] COOPER B,FENG J,GARRETT W M.Relative,label-free protein quantitation:spectral counting error statistics from nine replicate MudPIT samples[J].Journal of the American Society for Mass Spectrometry,2010,21(9):1534-1546.
    [71] OLINARES P D B,KIM J,DAVIS J I,et al.Subunit stoichiometry,evolution,and functional implications of an asymmetric plant plastid ClpP/R protease complex in Arabidopsis[J].The Plant Cell,2011,23(6):2348-2361.
    [72] LIN Z,YIN H,LO A,et al.Label-free relative quantification of alpha-2-macroglobulin site-specific core-fucosylation in pancreatic cancer by LC-MS/MS[J].Electrophoresis,2014,35(15):2108-2115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700