流体对石灰岩断层摩擦滑动影响的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on the effect of fluid to friction sliding of limestone fault gouge
  • 作者:焦裕 ; 周永胜 ; 张雷 ; 姚文明
  • 英文作者:JIAO Yu;ZHOU YongSheng;ZHANG Lei;YAO WenMing;State Key Laboratory of Earthquake Dynamics,Institute of Geology,China EarthquakeAdministration;
  • 关键词:石灰岩 ; 摩擦滑动 ; 稳滑 ; 慢滑移 ; 黏滑 ; 溶解 ; 沉淀
  • 英文关键词:Limestone;;Frictional slip;;Stable sliding;;Slow slip;;Stick slip;;Dissolution;;Precipitation
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国地震局地质研究所地震动力学国家重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:地球物理学报
  • 年:2019
  • 期:v.62
  • 基金:国家重点研发计划(2018YFC1503404);; 地震行业科研专项(201508018)资助
  • 语种:中文;
  • 页:DQWX201901012
  • 页数:13
  • CN:01
  • ISSN:11-2074/P
  • 分类号:165-177
摘要
在气体介质三轴高温岩石力学实验仪器上,采用意大利Scaglia Bianca石灰岩,在温度50~300℃、围压150MPa,含50MPa孔隙压、无孔隙压含饱和水和完全干燥三种条件下,开展摩擦滑动实验.实验力学数据和显微结构表明,完全干燥样品在120℃时出现慢滑移,实验样品中没有出现溶解与沉淀.无孔隙压含饱和水条件下,100℃、120℃、150℃条件下出现典型的慢滑移,实验样品中含有微弱的溶解与沉淀;300℃条件下出现黏滑,实验样品中出现沉淀.在含50MPa孔隙压条件下,50℃时的实验表现为典型的稳滑,实验样品中以溶解为主;在100~150℃时,出现慢滑移,实验样品中以溶解为主,沉淀为辅;在200~300℃时,出现典型黏滑,实验样品中以沉淀为主.实验结果表明,石灰岩断层泥摩擦滑动稳定性随温度变化,受流体中碳酸钙的溶解和沉淀作用控制,因此,流体中矿物质的饱和度这一化学性质对断层带的摩擦强度和摩擦滑动稳定性具有显著影响.
        We performed friction experiments using Scaglia Bianca limestone gouge through a gas medium tri-axial apparatus.The experimental conditions are temperatures from 50℃to 300℃ with confining pressure of 150 MPa,and different pore pressure.A series of experiments were conducted with pore pressure of 50 MPa,no pore pressure but saturated with water,and completely dry condition.Mechanical data and microstructures analysis show that slow slip occurs at 120℃ with completely dry condition,without dissolution and precipitation in deformed gouge sample.Under the condition of no pore pressure but saturated with water,typical slow slip occurs,accompanied with little dissolution and precipitation in fault gouge under temperatures of 100℃,120℃,150℃,whereas,stick-slip occurs with a lot of dissolution and precipitation in gouge at 300 ℃.It is stable sliding with main mechanism of dissolution in gouge at temperatures of 50 ℃ and pore pressure of 50 MPa.It shows slow slip with main mechanism of dissolution and supplemented by precipitation in deformed gouge at temperatures of 100~150 ℃,stick-slip occurred at 200~300 ℃with main mechanism of precipitation.The results indicated that the transition from steady-state slip to slow slip and to stick-slip with temperatures increasing,which was controlled by dissolution andprecipitation of limestone gouge,that may help to understand the chemical effect of fluid to fault sliding.
引文
Blanpied M L,Lockner D A,Byerlee J D.1991.Fault stability inferred from granite sliding experiments at hydrothermal conditions.Geophysical Research Letters,18(4):609-612.
    Blanpied M L,Lockner D A,Byerlee J D.1995.Frictional slip of granite at hydrothermal conditions.Journal of Geophysical Research:Solid Earth,100(B7):13045-13064.
    Chen J Y,Verberne B A,Spiers C J.2015.Interseismic restrengthening and stabilization of carbonate faults by“nonDieterich”healing under hydrothermal conditions.Earth and Planetary Science Letters,423:1-12,doi:10.1016/j.epsl.2015.03.044.
    Chen J Y,Spiers C J.2016.Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model.Journal of Geophysical Research:Solid Earth,121(12):8642-8665,doi:10.1002/2016JB013470.
    Chenu C,Plante A F.2006.Clay-sized organo-mineral complexes in a cultivation chronosequence:revisiting the concept of the‘primary organo-mineral complex’.European Journal of Soil Science,57(4):596-607.
    Crawford B R,Faulkner D R,Rutter E H.2008.Strength,porosity,and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge.Journal of Geophysical Research:Solid Earth,113(B3):B03207,doi:10.1029/2006JB004634.
    Dieterich J H.1992.Earthquake nucleation on faults with rate-and state-dependent strength.Tectonophysics,211(1-4):115-134.
    Faulkner D R,Rutter E H.2000.Comparisons of water and argon permeability in natural clay-bearing fault gouge under high pressure at 20℃.Journal of Geophysical Research:Solid Earth,105(B7):16415-16426.
    Gao X,Wang K L.2017.Rheological separation of the megathrust seismogenic zone and episodic tremor and slip.Nature,543(7645):416-419,doi:10.1038/nature21389.
    Gratier J P,Favreau P,Renard F,et al.2002.Fluid pressure evolution during the earthquake cycle controlled by fluid flow and pressure solution crack sealing.Earth,Planets and Space,54(11):1139-1146.
    Gratier J P,Richard J,Renard F,et al.2011.Aseismic sliding of active faults by pressure solution creep:Evidence from the San Andreas Fault Observatory at depth.Geology,39(12):1131-1134.
    Gratier J P,Dysthe D K,Renard F.2013.The role of pressure solution creep in the ductility of the Earth′s upper crust.Advances in Geophysics,54:47-179.
    Han R,Shimamoto T,Hirose T,et al.2007.Ultralow friction of carbonate faults caused by thermal decomposition.Science,316(5826):878-881.
    He C R,Yao W M,Wang Z L,et al.2006.Strength and stability of frictional sliding of gabbro gouge at elevated temperatures.Tectonophysics,427(1-4):217-229,doi:10.1016/j.tecto.2006.05.023.
    He C R,Wang Z L,Yao W M.2007.Frictional sliding of gabbro gouge under hydrothermal conditions.Tectonophysics,445(3-4):353-362,doi:10.1016/j.tecto.2007.09.008.
    He C R,Luo L,Hao Q M,et al.2013.Velocity-weakening behavior of plagioclase and pyroxene gouges and stabilizing effect of small amounts of quartz under hydrothermal conditions.Journal of Geophysical Research:Solid Earth,118(7):3408-3430,doi:10.1002/jgrb.50280.
    He C R,Tan W B,Zhang L.2016.Comparing dry and wet friction of plagioclase:Implication to the mechanism of frictional evolution effect at hydrothermal conditions.Journal of Geophysical Research:Solid Earth,121(9):6365-6383,doi:10.1002/2016JB012834.
    Ikari M J,Saffer D M,Marone C.2009.Frictional and hydrologic properties of clay-rich fault gouge.Journal of Geophysical Research:Solid Earth,114(B5):B05409,doi:10.1029/2008JB006089.
    Karner S L,Marone C,Evans B.1997.Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions.Tectonophysics,277(1-3):41-55.
    Lacey H C.2018.The properties and role of carbonate cementation in fault zones[Ph.D.thesis].Department of Earth Science and Engineering,Imperial College London.
    Liu Y J,Rice J R.2007.Spontaneous and triggered aseismic deformation transients in a subduction fault model.Journal of Geophysical Research:Solid Earth,112(B9):B09404,doi:10.1029/2007JB004930.
    Liu Y J,Rice J R.2009.Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia.Journal of Geophysical Research:Solid Earth,114(B9):B09407,doi:10.1029/2008JB006142.
    Lockner D A,Summers R,Byerlee J D.1986.Effects of temperature and sliding rate on frictional strength of granite.Pure and Applied Geophysics,124(3):445-469.
    Logan J M,Rauenzahn K A.1987.Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity,composition and fabric.Tectonophysics,144(1-3):87-108.
    Lu Z,He C R.2014.Frictional behavior of simulated biotite fault gouge under hydrothermal conditions.Tectonophysics,622:62-80,doi:10.1016/j.tecto.2014.03.002.
    Mariani E,Brodie K H,Rutter E H.2006.Experimental deformation of muscovite shear zones at high temperatures under hydrothermal conditions and the strength of phyllosilicate-bearing faults in nature.Journal of Structural Geology,28(9):1569-1587.
    Moore D E,Lockner D A,Summers R,et al.1996.Strength of chrysotile-serpentinite gouge under hydrothermal conditions:Can it explain a weak San Andreas fault?.Geology,24(11):1041-1044.
    Moore D E,Lockner D A.2008.Talc friction in the temperature range 25~400℃:Relevance for fault-zone weakening.Tectonophysics,449(1-4):120-132.
    Moore D E,Lockner D A,Ma S L,et al.1997.Strengths of serpentinite gouges at elevated temperatures.Journal of Geophysical Research:Solid Earth,102(B7):14787-14801.
    Nakatani M,Scholz C H.2004.Frictional healing of quartz gouge under hydrothermal conditions:2.Quantitative interpretation with a physical model.Journal of Geophysical Research:Solid Earth,109(B7):B07202,doi:10.1029/2003JB002938.
    Plummer L N,Busenberg E.1982.The solubilities of calcite,aragonite and vaterite in CO2-H2O solutions between 0and 90℃,and an evaluation of the aqueous model for the system CaCO3-CO2-H2O.Geochimica et Cosmochimica Acta,46(6):1011-1040.
    Saffer D M,Wallace L M.2015.The frictional,hydrologic,metamorphic and thermal habitat of shallow slow earthquakes.Nature Geoscience,8(8):594-600.
    Scuderi M M,Niemeijer A R,Collettini C,et al.2013.Frictional properties and slip stability of active faults within carbonateevaporite sequences:The role of dolomite and anhydrite.Earth and Planetary Science Letters,369-370:220-232.
    Shimamoto T,Logan J M.1981.Effects of simulated clay gouges on the sliding behavior of Tennessee sandston.Tectonophysics,75(3-4):243-255.
    Stumm W,Morgan J J.1981.Aquatic Chemistry:An Introduction
    Emphasizing Chemical Equilibria in Natural Waters.2nd ed.New York:Wiley,795.
    Takahashi M,Mizoguchi K,Kitamura K,et al.2007.Effects of clay content on the frictional strength and fluid transport property of faults.Journal of Geophysical Research:Solid Earth,112(B8):B08206,doi:10.1029/2006JB004678.
    Tembe S,Lockner D A,Wong T F.2010.Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges:Binary and ternary mixtures of quartz,illite,and montmorillonite.Journal of Geophysical Research:Solid Earth,115(B3):B03416,doi:10.1029/2009JB006383.
    Tse S T,Rice J R.1986.Crustal earthquake instability in relation to the depth variation of frictional slip properties.Journal of Geophysical Research:Solid Earth,91(B9):9452-9472.
    Tullis T E,Weeks J D.1986.Constitutive behavior and stability of frictional sliding of granite.Pure and Applied Geophysics,124(3):383-414.
    Verberne B A,He C R,Spiers C J.2010.Frictional properties of sedimentary rocks and natural fault gouge from the Longmen Shan fault zone,Sichuan,China.Bulletin of the Seismological Society of America,100(5B):2767-2790.
    Verberne B A,De Bresser J H P,Niemeijer A R,et al.2013.Nanocrystalline slip zones in calcite fault gouge show intense crystallographic preferred orientation:Crystal plasticity at subseismic slip rates at 18~150C.Geology,41(8):863-866.
    Zhang L,He C R.2013.Frictional properties of natural gouges from Longmenshan fault zone ruptured during the Wenchuan MW7.9earthquake.Tectonophysics,594:149-164.
    Zhang L,He C R.2016.Frictional properties of phyllosilicate-rich mylonite and conditions for the brittle-ductile transition.Journal of Geophysical Research:Solid Earth,121(4):3017-3047,doi:10.1002/2015JB012489.
    Zhang Y Y,Zhou Y S.2012.The strength and deformation mechanisms of brittle-plastic transition zone,and effects of strain rate and fluid.Seismology and Geology,34(1):172-194,doi:10.3669/j.issn.0253-4967.2012.01.016.
    Zhou Y S,He C R,Yang X S.2008.Water contents and deformation mechanism in ductile shear zone of middle crust along the Red River fault in southwestern China.Sci.China Ser.D-Earth Sci.,51(10):1411-1425.
    Zhou Y S,He C R.2009.The rheological structures of crust and mechanics of high-angle reverse fault slip for Wenchuan MS8.0earthquake.Chinese Journal of Geophysics(in Chinese),52(2):474-484.
    张媛媛,周永胜.2012.断层脆塑性转化带的强度与变形机制及其流体和应变速率的影响.地震地质,34(1):172-194,doi:10.3969/j.issn.0253-4967.2012.01.016.
    周永胜,何昌荣,杨晓松.2008.中地壳韧性剪切带中的水与变形机制.中国科学D辑:地球科学,38(7):819-832.
    周永胜,何昌荣.2009.汶川地震区的流变结构与发震高角度逆断层滑动的力学条件.地球物理学报,52(2):474-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700