Influence of permeation effect on themicrofabric of the slip zone soils: A case study from the Huangtupolandslide
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of permeation effect on themicrofabric of the slip zone soils: A case study from the Huangtupolandslide
  • 作者:MIAO ; Fa-sheng ; WU ; Yi-ping ; XIE ; Yuan-hua ; LI ; Lin-wei ; LI ; Jie ; HUANG ; Lei
  • 英文作者:MIAO Fa-sheng;WU Yi-ping;XIE Yuan-hua;LI Lin-wei;LI Jie;HUANG Lei;Faculty of Engineering, China University of Geosciences;China University of Geosciences Press;
  • 英文关键词:Permeation effect;;Slip zone soils;;Microstructure;;SEM;;Fractal theory;;Preferential orientations
  • 中文刊名:SDKB
  • 英文刊名:Journal of Mountain Science 山地科学学报(英文版)
  • 机构:Faculty of Engineering, China University of Geosciences;China University of Geosciences Press(Wuhan);
  • 出版日期:2019-06-13
  • 出版单位:Journal of Mountain Science
  • 年:2019
  • 期:v.16
  • 基金:supported by the National Key R&D Program of China (2017YFC1501301);; the National Natural Science Foundation of China (No. 41572278 and No. 41772310)
  • 语种:英文;
  • 页:SDKB201906002
  • 页数:13
  • CN:06
  • ISSN:51-1668/P
  • 分类号:20-32
摘要
This study aims to investigate the correlation between the permeation effect and microfabric of the slip zone soils with Huangtupo landslide in the Three Gorges Reservoir as the study case. Based on the permeability test and scanning electron microscope(SEM) images analysis, the fractal theory and probability entropy are used to quantify the characteristics of the remodeling specimens. First, the relationships between initial moisture content(IMC) and microstructure of the soil(percentage of particle area(PPA), pore roundness(Rp)) before and after permeability test are summarized. Then, the fractal dimension of the soil(pore distribution(Dpd), pore size(Dps)) are analyzed under the permeation effect. Based on the probability entropy, the entropy of pore(Ep) is used to characterize the porosity orientation, and the rose diagrams are used to show the particle orientation under the permeation effect. Finally, the relationship between the microstructure of the soil and its mechanical property is discussed. Results show that under the permeation effect, the microstructure of the soil has undergone tremendous changes. A flat long pore channel is formed. The order of the pore arrangement is enhanced, and soil particles switch the long axis to parallel infiltration direction to reach a new steady state. It can be inferred that the strength of soil would be weakened if the fractal dimension of soil pore decreases under any external environment.
        This study aims to investigate the correlation between the permeation effect and microfabric of the slip zone soils with Huangtupo landslide in the Three Gorges Reservoir as the study case. Based on the permeability test and scanning electron microscope(SEM) images analysis, the fractal theory and probability entropy are used to quantify the characteristics of the remodeling specimens. First, the relationships between initial moisture content(IMC) and microstructure of the soil(percentage of particle area(PPA), pore roundness(Rp)) before and after permeability test are summarized. Then, the fractal dimension of the soil(pore distribution(Dpd), pore size(Dps)) are analyzed under the permeation effect. Based on the probability entropy, the entropy of pore(Ep) is used to characterize the porosity orientation, and the rose diagrams are used to show the particle orientation under the permeation effect. Finally, the relationship between the microstructure of the soil and its mechanical property is discussed. Results show that under the permeation effect, the microstructure of the soil has undergone tremendous changes. A flat long pore channel is formed. The order of the pore arrangement is enhanced, and soil particles switch the long axis to parallel infiltration direction to reach a new steady state. It can be inferred that the strength of soil would be weakened if the fractal dimension of soil pore decreases under any external environment.
引文
Al-Mukhtar M,Khattab S,Alcover JF(2012)Microstructure and geotechnical properties of lime-treated expansive clayey soil.Engineering geology 139:17-27.https://doi.org/10.1016/j.enggeo.2012.04.004
    Alonso EE,Pinyol NM,Gens A(2013)Compacted soil behaviour:initial state,structure and constitutive modelling.Géotechnique 63(6):463.https://dx.doi.org/10.1680/geot.11.P.134
    Barton CM(1974)Micromorphological soil-investigation work of Dr.D.-Lafeber.In Soil Microscopy Proceedings of the International Working Meeting on Soil Micromorphology.https://doi.org/10.1097/00010694-197605000-00014
    Cetin H(2004)Soil-particle and pore orientations during consolidation of cohesive soils.Engineering geology 73(1):1-11.https://doi.org/10.1016/j.enggeo.2003.11.006
    Chen X,Zhu H,Huang J,et al.(2016)Stability analysis of an ancient landslide considering shear strength reduction behavior of slip zone soil.Landslides 13(1):1-9.https://doi.org/1007/s10346-015-0629-7
    Cuisinier O,Auriol JC,Le Borgne T,et al.(2011)Microstructure and hydraulic conductivity of a compacted lime-treated soil.Engineering geology 123(3):187-193.https://doi.org/10.1016/j.enggeo.2011.07.010
    Eisazadeh A,Kassim KA,Nur H(2012)Stabilization of tropical kaolin soil with phosphoric acid and lime.Natural hazards61(3):931-942.https://doi.org/10.1007/s11069-011-9941-2
    Gagnepain JJ,Roques-Carmes C(1986)Fractal approach to two-dimensional and three-dimensional surface roughness.Wear 109(1-4):119-126.https://doi.org/10.1016/0043-1648(86)90257-7
    Yurong H,Peng C,Chaolin L,et al.(2006)Micromorphology of landslide soil.Journal of Mountain Science 3(2):147-157.https://doi.org/10.1007/s11629-006-0147-0
    Hapca S,Baveye PC,Wilson C,et al.(2015)Three-dimensional mapping of soil chemical characteristics at micrometric scale by combining 2D SEM-EDX data and 3D X-Ray CT images.PloS one 10(9):e0137205.https://doi.org/10.1371/journal.pone.0137205
    Hattab M,Fleureau JM(2010)Experimental study of kaolin particle orientation mechanism.Géotechnique 60(5):323-331.https://doi.org/10.1680/geot.2010.60.5.323
    Hu X,Tang H,Li C,et al.(2012)Stability of Huangtupo Riverside Slumping MassⅡunder Water Level Fluctuation of Three Gorges Reservoir.Journal of Earth Science(3):326-334.https://doi.org/10.1007/s12583-012-0259-0
    Iqbal J,Dai F,Hong M,et al.(2018)Failure mechanism and stability analysis of an active landslide in the xiangjiaba reservoir area,southwest china.Journal of Earth Science:1-16.https://doi.org/10.1007/s12583-017-0753-5
    Jeong GC,Kim KS,Choo CO,et al.(2011)Characteristics of landslides induced by a debris flow at different geology with emphasis on clay mineralogy in South Korea.Natural hazards59(1):347-365.https://doi.org/10.1007/s11069-011-9760-5
    Jiang J,Xiang W,Zhang W,et al.(2016)Deformation forecasting of huangtupo riverside landslide in the case of frequent microseisms.Journal of Earth Science 27(1):160-166.https://doi.org/10.1007/s12583-016-0617-4
    Kong LW,WangM,Guo AG,et al.(2017)Effect of drying environment on engineering properties of an expansive soil and its microstructure.Journal of Mountain Science 14(6):1194-1201.https://doi.org/10.1007/s11629-017-4430-z
    Li N(2017)Experimental Study on the Microcosmic Fractal Property of Soil Subjected to Repeated Freezing and Thawing.Shijiazhuang Tiedao University.Pp62-64.(In Chinese)
    Li N,Wang T(2016)Research on The Microcosmic Fractal Property of Soil Subjected to Repeated Freezing and Thawing.In:Chen F,CaiXP,Wang LJ,(eds.),The 4th International Conference on Railway Engineering[C].Beijing:China Railway Publishing House 355-359.(In Chinese)
    Lu S,Tang H,Zhang Y,et al.(2017)Effects of the particle-size distribution on the micro and macro behavior of soils:fractal dimension as an indicator of the spatial variability of a slip zone in a landslide.Bulletin of Engineering Geology&the Environment:1-13.https://doi.org/10.1007/s10064-017-1028-1
    Mermut AR(2009)Historical development in soil micromorphological imaging.Journal of Mountain Science6(2):107-112.https://doi.org/10.1007/s11629-009-1026-2
    Miao F,Wu Y,Li L,et al.(2018a)Centrifuge model test on the retrogressive landslide subjected to reservoir water level fluctuation.Engineering Geology 245:169-179.https://doi.org/10.1016/j.enggeo.2018.08.016
    Miao F,Wu Y,Xie Y,et al.(2018b)Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model.Landslides 15(3):475-488.https://doi.org/10.1007/s10346-017-0883-y
    Miao F,Wu Y,Xie Y,et al.(2017)Research on progressive failure process of Baishuihe landslide based on Monte Carlo model.Stochastic Environmental Research and Risk Assessment 31(7):1683-1696.https://doi.org/10.1007/s00477-016-1224-8
    Nian TK,Feng ZK,Yu PC,et al.(2013)Strength behavior of slipzone soils of landslide subject to the change of moisture content.Natural hazards 68(2):711-721.https://doi.org/10.1007/s11069-013-0647-5
    Romero E,Della Vecchia G,Jommi C(2011)An insight into the water retention properties of compacted clayey soils.Géotechnique 61(4):313-328.https://doi.org/10.1680/geot.2011.61.4.313
    Romero E(2013)A microstructural insight into compacted clayey soils and their hydraulic properties.Engineering Geology 165:3-19.https://doi.org/10.1016/j.enggeo.2013.05.024
    Shi B(1996)Quantitative assessment of changes of microstructure for clayey soil in the process of compaction.Chinese journal of geotechnical engineering 18(4):57-62.(In Chinese)
    Song K,Lu G,Zhang G,et al.(2017)Influence of uncertainty in the initial groundwater table on long-term stability of reservoir landslides.Bulletin of Engineering Geology&the Environment 76(3):901-908.https://doi.org/10.1007/s10064-016-0909-z
    Tang C S,Shi B,Wang BJ(2008)Factors affecting analysis of soil microstructure using SEM.Chinese Journal of Geotechnical Engineering 30(4):560.(In Chinese)
    Tang H,Li C,Hu X,et al.(2015)Deformation response of the Huangtupo landslide to rainfall and the changing levels of the Three Gorges Reservoir.Bulletin of Engineering Geology&the Environment 74(3):933-942.https://doi.org/10.1007/s10064-014-0671-z
    Wu Y,Miao F,Li L,et al.(2017)Time-varying reliability analysis of Huangtupo Riverside No.2 Landslide in the Three Gorges Reservoir based on water-soil coupling.Engineering Geology 226:267-276.https://doi.org/10.1016/j.enggeo.2017.06.016
    Xia M,Ren G,Zhu S,et al.(2014)Relationship between landslide stability and reservoir water level variation.Bulletin of Engineering Geology&the Environment 74(3):909-917.https://doi.org/10.1007/s10064-014-0654-0
    Yu Y,Shen M,Sun H,et al.(2019).Robust design of siphon drainage method for stabilizing rainfall-induced landslides.Engineering Geology 249:186-197.https://doi.org/10.1016/j.enggeo.2019.01.001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700