薄膜谐振Lamb波传感器测量液体流速矢量的方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A method for fluid velocity vector measurement using thin film Lamb wave resonator
  • 作者:孔慧 ; 李传宇 ; 周连群 ; 姚佳 ; 唐玉国 ; 郭振 ; 张威
  • 英文作者:KONG Hui;LI Chuan-yu;ZHOU Lian-qun;YAO Jia;TANG Yu-guo;GUO Zhen;ZHANG Wei;School of Mechatronic Engineering and Automation,Shanghai University;Suzhou Institute of Biomedical Engineering and Technology,Chinese Academy of Sciences;
  • 关键词:薄膜谐振型Lamb波传感器 ; 消逝波 ; 反对称模式 ; 流速矢量测量
  • 英文关键词:thin film Lamb wave resonator;;evanescent waves;;antisymmetric mode;;liquid flow velocity measurement
  • 中文刊名:GXJM
  • 英文刊名:Optics and Precision Engineering
  • 机构:上海大学机电工程与自动化学院;中国科学院苏州生物医学工程技术研究所;
  • 出版日期:2017-01-15
  • 出版单位:光学精密工程
  • 年:2017
  • 期:v.25
  • 基金:国家863高技术研究发展计划资助项目(No.2015AA042603)
  • 语种:中文;
  • 页:GXJM201701021
  • 页数:8
  • CN:01
  • ISSN:22-1198/TH
  • 分类号:160-167
摘要
针对液体流速测量领域中微型流量传感器高品质因数、高灵敏度的性能要求。本文设计一种双端增强型薄膜谐振结构实现Lamb波传感器的高品质因数,利用传感器反对称模式(A01模式)在薄膜-液体界面处的消逝波实现液体流速矢量测量。所制作的双端增强型薄膜谐振Lamb传感器A01模式的主峰品质因数为703,A01模式的频率移动量与液体流速大小存在线性关系,频率移动方向与液体流动方向存在对应关系。流速实测灵敏度约为270 Hz/mm/s,传感器稳定性噪声小于0.2Hz,流速最低检测极限值(LOD)为2.2μm/s,流量最低检测极限值(LOD)为18.3nL/min。结果表明,双端增强型薄膜谐振Lamb波传感器可以实现液体流速高灵敏度矢量测量。
        The trend of further research of the micro flow sensor is higher quality factor and sensitivity in the field of velocity measurement.In this letter,a new type of double-ended enhanced film resonance structure was proposed to obtain high quality factor of the Lamb wave sensor.The vector measurements of the liquid flow velocity can be achieved by using the evanescent wave,which exists around the membrane-liquid interface of one antisymmetric mode(A01)of this Lamb wave sensor.The quality factor for the prominent peak of the A01 mode reaches 703.There is a linear relationship between the phase frequency shifts of A01 mode and the value of fluid velocity,while the direction of flow velocity can be judged by the phase frequency shifts direction.Correspondingly,the sensitivity of flow velocity measurement is about 270 Hz/mm/s.As the maximum noises of A01 mode is less than0.2Hz,the limit of detection of the flow velocity(LOD)is 2.2μm/s and the flow rate(LOD)is18.3nL/min.The results demonstrate that the vector measurements of the liquid flow velocity can be actualized with high sensitivity by the double-ended enhanced Lamb wave sensor.
引文
[1]CHONG Z Z,TOR S B,LOH N H,et al..Acoustofluidic control of bubble size in microfluidic flow-focusing configuration[J].Lab on a Chip,2015,15(4):996-999.
    [2]ZHANG L,YU X,YOU S,et al..Highly sensitive microfluidic flow sensor based on aligned piezoelectric poly(vinylidene fluoride-trifluoroethylene)nanofibers[J].Applied Physics Letters,2015,107(24):242901.
    [3]MORINI G L,YANG Y,CHALABI H,et al..A critical review of the measurement techniques for the analysis of gas microflows through microchannels[J].Experimental Thermal and Fluid Science,2011,35(6):849-865.
    [4]SCHULER G A,WOKAUN A,BCHI F N.Local online gas analysis in PEFC using tracer gas concepts[J].Journal of Power Sources,2010,195(6):1647-1656.
    [5]KHADEM M,SHAMS M,HOSSAINPOUR S.Numerical simulation of roughness effects on flow and heat transfer in microchannels at slip flow regime[J].International Communications in Heat and Mass Transfer,2009,36(1):69-77.
    [6]ZHANG L,YU X,YOU S,et al..Highly sensitive microfluidic flow sensor based on aligned piezoelectric poly(vinylidene fluoride-trifluoroethylene)nanofibers[J].Applied Physics Letters,2015,107(24):242901.
    [7]AGRAWAL A.A comprehensive review on gas flow in microchannels[J].International Journal of Micro-Nano Scale Transport,2011,2(1):1-40.
    [8]HO C M,TAI Y C.Micro-electro-mechanical-systems(MEMS)and fluid flows[J].Annual Review of Fluid Mechanics,1998,30(1):579-612.
    [9]ZHANG Z,ZHANG H,YE H.Pressure-driven flow in parallel-plate nanochannels[J].Applied Physics Letters,2009,95(15):154101.
    [10]WERELEY S T,MEINHART C D.Recent advances in micro-particle image velocimetry[J].Annual Review of Fluid Mechanics,2010,42:557-576.
    [11]NGUYEN N.Micromachined flow sensors[J].Flow Measurement and Instrumentation,1997,8(1):7-16.
    [12]LNGE K,RAPP B E,RAPP M.Surface acoustic wave biosensors:a review[J].Analytical and Bioanalytical Chemistry,2008,391(5):1509-1519.
    [13]WANG Y H,CHEN C P,CHANG C M,et al..MEMS-based gas flow sensors[J].Microfluidics and Nanofluidics,2009,6(3):333-346.
    [14]MATSUDA Y,MISAKI R,YAMAGUCHI H,et al..Pressure-sensitive channel chip for visualization measurement of micro gas flows[J].Microfluidics and Nanofluidics,2011,11(4):507-510.
    [15]WU C H,KANG D,CHEN P H,et al..MEMS thermal flow sensors[J].Sensors and Actuators A:Physical,2016,241:135-144.
    [16]QIAN M,NIU L,WANG Y,et al..Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry(micro-EPIV)[J].Physics in Medicine and Biology,2010,55(20):6069.
    [17]LUCCHETTA D E,VITA F,FRANCESCANGELI D,et al..Optical measurement of flow rate in a microfluidic channel[J].Microfluidics and Nanofluidics,2016,20(1).
    [18]VILARES R,HUNTER C,UGARTE I,et al..Fabrication and testing of a SU-8thermal flow sensor[J].Sensors and Actuators B:Chemical,2010,147(2):411-417.
    [19]KUO J T,YU L,MENG E.Micromachined thermal flow sensors[J].Micromachines,2012,3(3):550-573.
    [20]WU Y,DE LABACHELERIE M,BASTIEN F.Investigations on excitation and detection methods for Lamb wave sensors[J].Sensors and Actuators A:Physical,2002,100(2):214-222.
    [21]JIA H,DUHAMEL R,MANCEAU J F,et al..Improvement of Lamb waves sensors:Temperature sensitivity compensation[J].Sensors and Actuators A:Physical,2005,121(2):321-326.
    [22]LI F,MANCEAU J F,WU Y,et al..Measurements of evanescent wave in a sandwich Lamb wave sensor[J].Applied Physics Letters,2008,93(17):174101.
    [23]LI F,WU Y,MANCEAU J F,et al..Temperature compensation of lamb wave sensor by combined antisymmetric mode and symmetric mode[J].Applied Physics Letters,2008,92(7):4101.
    [24]贾宏光,光玲玲,刘波.Lamb波压差式微流量传感器[J].光学精密工程,2009,17(5):1033-1038.JIA H G,GUANG L L,LIU B.Different pressure microflow sensors based on Lamb waves[J].Opt.Precision Eng.,2009,17(5):1033-1038.(in Chinese)
    [25]ZHOU L,MANCEAU J F O,BASTIEN F O.Influence of gases on Lamb waves propagations in resonator[J].Applied Physics Letters,2009,95(22):223505.
    [26]ZHOU L,WU Y,XUAN M,et al..A multi-parameter decoupling method with a Lamb wave sensor for improving the selectivity of label-free liquid detection[J].Sensors(Basel),2012,12(8):10369-80.
    [27]MIREA T,YANTCHEV V.Influence of liquid properties on the performance of S0-mode Lamb wave sensors:A theoretical analysis[J].Sensors and Actuators B:Chemical,2015,208:212-219.
    [28]MIREA T,YANTCHEV V,OLIVARES J,et al..Influence of liquid properties on the performance of S0-mode Lamb wave sensorsⅡ:Experimental validation[J].Sensors and Actuators B:Chemical,2016,229:331-337.
    [29]WILLBERG C,DUCZEK S,VIVAR-PEREZ J M,et al..Simulation methods for guided wave-based structural health monitoring:a review[J].Applied Mechanics Reviews,2015,67(1):010803.
    [30]MORONEY R,WHITE R,HOWE R.Microtransport induced by ultrasonic Lamb waves[J].Applied Physics Letters,1991,59(7):774-776.
    [31]NGUYEN N,WHITE R.Design and optimization of an ultrasonic flexural plate wave micropump using numerical simulation[J].Sensors and Actuators A:Physical,1999,77(3):229-236.
    [32]SAYAR E,FAROUK B.Acoustically generated flows in microchannel flexural plate wave sensors:Effects of compressibility[J].Sensors and Actuators A:Physical,2011,171(2):317-323.
    [33]ZHOU L,MANCEAU J F,BASTIEN F.Interaction between gas flow and a Lamb waves based microsensor[J].Sensors and Actuators A:Physical,2012,181:1-5.
    [34]OSBORNE M,HART S.Transmission,reflection,and guiding of an exponential pulse by a steel plate in water.I.Theory[J].The Journal of the Acoustical Society of America,1945,17(1):1-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700