Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide
  • 作者:Baohua ; Zhang ; Jintao ; Zhang
  • 英文作者:Baohua Zhang;Jintao Zhang;Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University;
  • 英文关键词:Electrocatalysts;;Copper;;Alloy;;Selectivity;;CO_2 electrochemical reduction;;Electrocatalytic activity;;Faradaic efficiency
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University;
  • 出版日期:2017-11-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2017
  • 期:v.26
  • 基金:financially supported by the Natural Scientific Foundation of China (no. 21503116);; the Open Funds of the State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (oic-201601008);; the Qingdao Basic & Applied Research Project (15-9-1-100-jch);; Taishan Scholars Program of Shandong Province (no. tsqn20161004);; the Youth 1000 Talent Program of China
  • 语种:英文;
  • 页:TRQZ201706003
  • 页数:17
  • CN:06
  • ISSN:10-1287/O6
  • 分类号:26-42
摘要
The recent development of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide(CO_2) has attracted much attention due to their unique activity and selectivity compared to other metal catalysts. Particularly, Cu is the unique electrocatalyst for CO_2 electrochemical reduction with high selectivity to generate a variety of hydrocarbons. In this review, we mainly summarize the recent advances on the rational design of Cu nanostructures, the composition regulation of Cu-based alloys, and the exploitation of advanced supports for improving the catalytic activity and selectivity toward electrochemical reduction of CO_2. The special focus is to demonstrate how to enhance the activity and selectivity of Cubased electrocatalyst for CO_2 reduction. The perspectives and challenges for the development of Cu-based electrocatalysts are also addressed. We hope this review can provide timely and valuable insights into the design of advanced electrocatalytic materials for CO_2 electrochemical reduction.
        The recent development of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide(CO_2) has attracted much attention due to their unique activity and selectivity compared to other metal catalysts. Particularly, Cu is the unique electrocatalyst for CO_2 electrochemical reduction with high selectivity to generate a variety of hydrocarbons. In this review, we mainly summarize the recent advances on the rational design of Cu nanostructures, the composition regulation of Cu-based alloys, and the exploitation of advanced supports for improving the catalytic activity and selectivity toward electrochemical reduction of CO_2. The special focus is to demonstrate how to enhance the activity and selectivity of Cubased electrocatalyst for CO_2 reduction. The perspectives and challenges for the development of Cu-based electrocatalysts are also addressed. We hope this review can provide timely and valuable insights into the design of advanced electrocatalytic materials for CO_2 electrochemical reduction.
引文
[1]S.Buller,J.Strunk,J.Energy Chem.25(2016)171–190.
    [2]X.Q.Zhang,X.B.Cheng,Q.Zhang,J.Energy Chem.25(2016)967–984.
    [3]C.Federsel,R.Jackstell,M.Beller,Angew.Chem.Int.Ed.49(2010)6254–6257.
    [4]R.Passalacqua,S.Perathoner,G.Centi,J.Energy Chem.26(2017)219–240.
    [5]S.S.Han,Y.F.Chen,S.Abanades,Z.K.Zhang,J.Energy Chem.26(2017)743–749.
    [6]L.X.Zhang,S.Q.Hu,X.F.Zhu,W.S.Yang,J.Energy Chem.26(2017)593–601.
    [7]Y.Lum,Y.Kwon,P.Lobaccaro,L.Chen,E.L.Clark,A.T.Bell,J.W.Ager,ACS Catal.6(2016)202–209.
    [8]A.M.Appel,J.E.Bercaw,A.B.Bocarsly,H.Dobbek,D.L.Du Bois,M.Dupuis,J.G.Ferry,E.Fujita,R.Hille,P.J.Kenis,C.A.Kerfeld,R.H.Morris,C.H.Peden,A.R.Portis,S.W.Ragsdale,T.B.Rauchfuss,J.N.Reek,L.C.Seefeldt,R.K.Thauer,G.L.Waldrop,Chem.Rev.113(2013)6621–6658.
    [9]C.Costentin,Chem.Soc.Rev.42(2013)2423–2436.
    [10]K.P.Kuhl,T.Hatsukade,E.R.Cave,D.N.Abram,J.Kibsgaard,T.F.Jaramillo,J.Am.Chem.Soc.136(2014)14107–14113.
    [11]D.F.Gao,F.Cai,Q.Q.Xu,G.X.Wang,X.L.Pan,X.H.Bao,J.Energy Chem.23(2014)694–700.
    [12]C.W.Li,M.W.Kanan,J.Am.Chem.Soc.134(2012)7231–7234.
    [13]D.Kim,J.Resasco,Y.Yu,A.M.Asiri,P.D.Yang,Nat.Commun.5(2014)4948.
    [14]D.Y.Kim,C.L.Xie,N.Becknell,Y.Yu,M.Karamad,K.Chan,E.J.Crumlin,J.K.N?rskov,P.D.Yang,J.Am.Chem.Soc.139(2017)8329–8336.
    [15]T.N.Huan,P.Prakash,P.Simon,G.Rousse,X.Xu,V.Artero,E.Gravel,E.Doris,M.Fontecave,Chem Sus Chem 9(2016)2317–2320.
    [16]O.A.Baturina,Q.Lu,M.A.Padilla,L.Xin,W.Z.Li,A.Serov,K.Artyushkova,P.Atanassov,F.Xu,A.Epshteyn,T.Brintlinger,M.Schuette,G.E.Collins,ACS Catal.4(2014)3682–3695.
    [17]M.Dunwell,Q.Lu,J.M.Heyes,J.Rosen,J.G.Chen,Y.S.Yan,F.Jiao,B.J.Xu,J.Am.Chem.Soc.139(2017)3774–3783.
    [18]R.Schlogl,Angew.Chem.Int.Ed.54(2015)3465–3520.
    [19]W.L.Zhu,Y.J.Zhang,H.Y.Zhang,H.F.Lv,Q.Li,R.Michalsky,A.A.Peterson,S.H.Sun,J.Am.Chem.Soc.136(2014)16132–16135.
    [20]D.H.Won,H.Shin,J.Koh,J.Chung,H.S.Lee,H.Kim,S.I.Woo,Angew.Chem.Int.Ed.55(2016)9297–9300.
    [21]R.J.Lim,M.Xie,M.A.Alam,J.M.Lee,A.Fisher,X.Wang,K.H.Lim,Catal.Today233(2014)169–180.
    [22]R.Kortlever,J.Shen,K.J.P.Schouten,F.Calle–Vallejo,M.T.M.Koper,J.Phys.Chem.Lett.6(2015)4073–4082.
    [23]Z.L.Wang,C.L.Li,Y.Yamauchi,Nano Today 11(2016)373–391.
    [24]A.Demirbas,Energy Combust.Sci.33(2007)1–18.
    [25]A.Y.Khodakov,W.Chu,P.Fongarl,Chem.Rev.107(2007)1692–1744.
    [26]S.Rasul,D.H.Anjum,A.Jedidi,Y.Minenkov,L.Cavallo,K.Takanabe,Angew.Chem.Int.Ed.127(2015)2174–2178.
    [27]K.J.P.Schouten,Z.Qin,E.P.Gallent,M.T.M.Koper,J.Am.Chem.Soc.134(2012)9864–9867.
    [28]C.W.Li,J.Ciston,M.W.Kanan,Nature 508(2014)504–507.
    [29]Y.Hori,in:C.Vayenas,R.White,M.E.Gamboa-Aldeco(Eds.),Mod.Aspects Electrochem.,Springer,New York,NY,2008,pp.89–189.
    [30]W.Zhu,R.Michalsky,O.Metin,H.Lv,S.Guo,C.J.Wright,X.Sun,A.A.Peterson,S.Sun,J.Am.Chem.Soc.135(2013)16833–16836.
    [31]Q.Lu,J.Rosen,Y.Zhou,G.S.Hutchings,Y.C.Kimmel,J.G.Chen,F.Jiao,Nat.Commun.5(2014)3242.
    [32]Y.Hori,K.Kikuchi,S.Suzuki,Chem.Lett.11(1985)1695–1698.
    [33]M.Gattrell,N.Gupta,A.Co,J.Electroanal.Chem.594(2006)1–19.
    [34]Y.Hori,A.Murata,R.Takahashi,S.Suzuki,J.Am.Chem.Soc.109(1987)5022–5023.
    [35]D.D.Zhu,J.L.Liu,S.Z.Qiao,Adv.Mater.28(2016)3423.
    [36]K.P.Kuhl,E.R.Cave,D.N.Abramc,T.F.Jaramillo,Energy Environ.Sci.5(2012)7050–7059.
    [37]Y.Hori,A.Murata,R.Takahashi,J.Chem.Soc.Faraday Trans.85(1989)2309–2326.
    [38]Y.Hori,I.Takahashi,O.Koga,N.Hoshi,J.Phys.Chem.B 106(2002)15–17.
    [39]N.Gupta,M.Gattrell,B.Mac Dougall,J.Appl.Electrochem.36(2006)161–172.
    [40]K.J.P.Schouten,Y.Kwon,C.J.M.van der Ham,Z.Qin,M.T.M.Koper,Chem.Sci.2(2011)1902–1909.
    [41]J.J.Bei,R.Zhang,Z.D.Chen,W.X.Lv,W.Wang,Int.J.Electrochem.Sci.12(2017)2365–2375.
    [42]Y.Zhao,C.Y.Wang,G.G.Wallace,J.Mater.Chem.A 4(2016)10710–10718.
    [43]A.Lavacchi,H.Miller,F.Vizza,Nanotechnology in Electrocatalysis for Energy,Springer,New York,NY,2013,pp.25–61.
    [44]J.T.Zhang,H.L.Li,P.Z.Guo,H.Y.Ma,X.S.Zhao,J.Mater.Chem.A 4(2016)8497–8511.
    [45]Y.H.Chen,M.W.Kanan,J.Am.Chem.Soc.134(2012)1986–1989.
    [46]Y.Chen,C.W.Li,M.W.Kanan,J.Am.Chem.Soc.134(2012)19969–19972.
    [47]S.Trasatti,O.A.Petrii,Pure Appl.Chem.65(1991)711–734.
    [48]G.Y.Wu,S.E.Bae,A.A.Gewirth,J.Gray,X.D.Zhu,T.P.Moffat,W.Schwarzacher,Surf.Sci.601(2007)1886–1891.
    [49]D.Raciti,K.J.Livi,C.Wang,Nano Lett.15(2015)6829–6835.
    [50]Y.Song,R.Peng,D.K.Hensley,P.V.Bonnesen,L.B.Liang,Z.L.Wu,H.M.Meyer,M.F.Chi,C.Ma,B.G.Sumpter,A.J.Rondinone,Chemistry Select 1(2016)1–8.
    [51]T.T.H.Hoang,S.C.Ma,J.I.Gold,P.J.A.Kenis,A.A.Gewirth,ACS Catal.7(2017)3313–3321.
    [52]Y.Yoon,A.S.Hall,Y.Surendranath,Angew.Chem.Int.Ed.55(2016)15282–15286.
    [53]S.C.Ma,M.Sadakiyo,M.Heima,R.Luo,R.T.Haasch,J.I.Gold,M.Yamauchi,P.J.A.Kenis,J.Am.Chem.Soc.139(2017)47–50.
    [54]M.Asadi,K.Kim,C.Liu,A.V.Addepalli,P.Abbasi,P.Yasaei,P.Phillips,A.Behranginia,J.M.Cerrato,R.Haasch,P.Zapol,B.Kumar,R.F.Klie,J.Abiade,L.A.Curtiss,A.Salehi–Khojin,Science 253(2016)467–470.
    [55]J.Kibsgaard,C.Tsai,K.Chan,J.D.Benck,J.K.N?rskov,F.Abild–Pedersen,T.F.Jaramillo,Energy Environ.Sci.8(2015)3022–3029.
    [56]B.An,J.Z.Zhang,K.Cheng,P.F.Ji,C.Wang,W.B.Lin,J.Am.Chem.Soc.139(2017)3834–3840.
    [57]R.Reske,H.Mistry,F.Behafarid,B.R.Cuenya,P.Strasser,J.Am.Chem.Soc.136(2014)6978–6986.
    [58]W.J.Durand,A.A.Peterson,F.Abild–Pedersen,J.K.Norskov,Surf.Sci.605(2011)1354–1359.
    [59]J.Medina–Ramos,J.L.Di Meglio,J.Rosenthal,J.Am.Chem.Soc.13(2014)8361–8367.
    [60]R.Kas,K.K.Hummadi,R.Kortlever,P.Wit,A.Milbrat,M.W.J.Luiten–Olieman,N.E.Benes,M.T.M.Koper,G.Mul,Nat.Commun.7(2016)10748.
    [61]Y.Gendel,H.Roth,A.Rommerskirchen,O.David,M.Wessling,Electrochem.Commun.4(2014)44–47.
    [62]Y.Chen,C.W.Li,M.W.Kanan,J.Am.Chem.Soc.13(2012)19969–19972.
    [63]S.Sen,D.Liu,G.T.R.Palmore,ACS Catal.4(2014)3091–3095.
    [64]A.Dutta,M.Rahaman,N.C.Luedi,M.Mohos,P.Broekmann,ACS Catal.6(2016)3804–3814.
    [65]H.C.Shin,J.Dong,M.L.Liu,Adv.Mater.15(2003)1640.
    [66]H.C.shin,M.L.Liu,Chem.Mater.16(2004)5460–5464.
    [67]F.S.Roberts,K.P.Kuhl,A.Nilsson,Angew.Chem.Int.Ed.127(2015)5268–5271.
    [68]H.Chen,M.Zhou,T.Wang,F.Lia,Y.X.Zhang,J.Mater.Chem.A 4(2016)10786–10793.
    [69]H.Chen,X.Q.Qi,M.Kuang,F.Dong,Y.X.Zhang,Electrochim.Acta 212(2016)671–677.
    [70]M.Huang,Y.X.Zhang,F.Li,Z.C.Wang,Alamusi,N.Hu,Z.Y.Wen,Q.Liu,Sci.Rep.4(2014)4518.
    [71]A.A.Peterson,F.Abild–Pedersen,F.Studt,J.Rossmeisl,J.K.Norskov,Energy Environ.Sci.3(2010)1311–1315.
    [72]Z.Yin,D.F.Gao,S.Y.Yao,B.Zhao,F.Cai,L.L.Lin,P.Tang,P.Zhai,G.X.Wang,D.Ma,X.H.Bao,Nano Energy 27(2016)35–43.
    [73]Q.Li,J.Y.Fu,W.L.Zhu,Z.Z.Chen,B.Shen,L.H.Wu,Z.Xi,T.Y.Wang,G.Lu,J.J.Zhu,S.H.Sun,J.Am.Chem.Soc.139(2017)4290–4293.
    [74]K.Larmier,W.C.Liao,S.Tada,E.Lam,R.Verel,A.Bansode,A.Urakawa,A.Comas-Vives,C.Coperet,Angew.Chem.Int.Ed.56(2017)2318–2323.
    [75]S.Kattel,P.J.Ramírez,J.G.Chen,J.A.Rodriguez,P.Liu,Science 355(2017)1296–1299.
    [76]S.Ma,M.Sadakiyo,R.Luo,M.Heima,P.Yamauchi,J.A.Kenis,J.Power Sources301(2016)219–228.
    [77]A.A.Peterson,J.K.N?rskov,J.Phys.Chem.Lett.3(2012)251–258.
    [78]S.X.Bai,Q.Shao,P.T.Wang,Q.G.Dai,X.Y.Wang,X.Q.Huang,J.Am.Chem.Soc.139(2017)6827–6830.
    [79]G.O.Larrazábal,A.J.Martín,S.Mitchell,R.Hauert,J.P.Ramírez,ACS Catal.6(2016)6265–6274.
    [80]A.Jedidi,S.Rasul,D.Masih,L.Cavallo,K.Takanabe,J.Mater.Chem.A 3(2015)19085–19092.
    [81]T.F Li,C.P.Berlinguette,Angew.Chem.Int.Ed.56(2017)6068–6072.
    [82]Z.M.Detweiler,J.L.White,S.L.Bernasek,A.B.Bocarsly,Langmuir 30(2014)7593–7600.
    [83]J.Guo,S.Ouyang,T.Kako,J.Ye,Appl.Surf.Sci.280(2013)418–423.
    [84]S.Kapusta,N.Hackerman,J.Electrochem.Soc.130(1983)607–613.
    [85]M.Liu,Y.Pang,B.Zhang,D.P.Luna,O.Voznyy,J.Xu,X.Zheng,C.T.Dinh,F.Fan,C.Cao,F.P.G.Arquer,T.S.Safaei,A.Mepham,A.Klinkova,E.Kumacheva,T.Filleter,D.Sinton,S.O.Kelley,E.H.Sargent,Nature 537(2016)382–386.
    [86]Y.Li,W.Gao,L.Ci,C.Wang,P.Ajayan,Carbon 48(2010)1124–1130.
    [87]G.Jeong,S.Suzuki,Y.Kobayashi,Nanotechnology 20(2009)285708-258713.
    [88]W.Lee,U.Maiti,J.Lee,J.Lim,T.Han,S.Kim,Chem.Commun.50(2014)6818–6830.
    [89]C.Kim,H.S.Jeon,T.Eom,M.S.Jee,H.Kim,C.M.Friend,B.K.Min,Y.J.Hwang,J.Am.Chem.Soc.137(2015)13844–13850.
    [90]M.Ding,Y.Tang,A.J.Star,Phys.Chem.Lett.4(2013)147–160.
    [91]S.Navalon,A.Dhakshinamoorthy,M.Alvaro,H.C.Garcia,Chem.Rev.312(2016)99–148.
    [92]M.Liu,R.Zhang,W.Chen,Chem.Rev.114(2014)5117–5160.
    [93]J.Saavedra,H.A.Doan,C.J.Pursell,L.C.Grabow,B.D.Chandler,Science 345(2014)1599–1602.
    [94]J.Y.Park,L.R.Baker,G.A.Somorjai,Chem.Rev.115(2015)2781–2817.
    [95]J.Graciani,K.Mudiyanselage,F.Xu,A.E.Baber,J.Evans,S.D.Senanayake,D.J.Stacchiola,P.Liu,J.Hrbek,J.F.Sanz,J.A.Rodriguez,Science 345(2014)546–550.
    [96]D.Wang,Q.Bi,G.Yin,W.Zhao,F.Huang,X.Xie,M.Jiang,Chem.Commun.52(2016)14226–14229.
    [97]C.Rogers,W.S.Perkins,G.Veber,T.E.Williams,R.R.Cloke,F.R.Fischer,J.Am.Chem.Soc.139(2017)4052–4061.
    [98]D.T.Whipple,P.J.A.Kenis,J.Phys.Chem.Lett.1(2010)3451–3458.
    [99]M.Watanabe,M.Shibata,A.Kato,M.Azuma,T.J.Sakata,J.Electrochem.Soc.138(1991)3382–3389.
    [100]Q.Li,W.L.Zhu,J.J.Fu,H.Y.Zhang,G.Wu,S.H.Sun,Nano Energy 24(2016)1–9.
    [101]I.Hod,M.D.Sampson,P.Deria,C.P.Kubiak,O.K.Farha,J.T.Hupp,ACS Catal.5(2015)6302–6309.
    [102]N.Kornienko,Y.Zhao,C.S.Kley,C.Zhu,D.Kim,S.Lin,C.J.Chang,O.M.Yaghi,P.Yang,J.Am.Chem.Soc.137(2015)14129–14135.
    [103]J.Albo,D.Vallejo,G.Beobide,O.Castillo,P.Casta?o,A.Irabien,Chem Sus Chem9(2016)1–11.
    [104]R.S.Kumar,S.S.Kumar,M.A.Kulandainathan,Electrochem.Commun.25(2012)70–73.
    [105]T.Maihom,S.Wannakao,B.Boekfa,J.Limtrakul,J.Phys.Chem.C.117(2013)17650–17658.
    [106]H.Hu,L.Han,M.Yu,Z.Wang,X.W.Lou,Energy Environ.Sci.9(2016)107–111.
    [107]L.Yang,M.Gao,B.Dai,X.Guo,Z.Liu,B.Peng,Electrochim.Acta 191(2016)813–820.
    [108]K.Zhao,Y.M.Liu,X.Quan,S.Chen,H.T.Yu,ACS Appl.Mater.Interfaces 9(2017)5302–5311.
    [109]M.Le,M.Ren,Z.Zhang,P.T.Sprunger,R.L.Kurtz,J.C.Flake,J.Electrochem.Soc.158(2011)E45–E49.
    [110]K.W.Frese,J.Electrochem.Soc.138(1991)3338–3344.
    [111]Y.Gao,F.Wu,H.Chen,J.Energy Chem.26(2017)428–432.
    [112]V.M.Bau,X.J.Bo,L.P.Guo,J.Energy Chem.26(2017)63–71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700