Encapsulating a Ni(Ⅱ) molecular catalyst in photoactive metal–organic framework for highly efficient photoreduction of CO_2
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Encapsulating a Ni(Ⅱ) molecular catalyst in photoactive metal–organic framework for highly efficient photoreduction of CO_2
  • 作者:Zhi-Hao ; Yan ; Bo ; Ma ; Shu-Rong ; Li ; Junxue ; Liu ; Rong ; Chen ; Ming-Hao ; Du ; Shengye ; Jin ; Gui-Lin ; Zhuang ; La-Sheng ; Long ; Xiang-Jian ; Kong ; Lan-Sun ; Zheng
  • 英文作者:Zhi-Hao Yan;Bo Ma;Shu-Rong Li;Junxue Liu;Rong Chen;Ming-Hao Du;Shengye Jin;Gui-Lin Zhuang;La-Sheng Long;Xiang-Jian Kong;Lan-Sun Zheng;Collaborative Innovation Center of Chemistry for Energy Materials,State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry,College of Chemistry and Chemical Engineering,Xiamen University;State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials,Dalian Institute of Chemical Physics,Chinese Academy of Sciences;College of Chemical Engineering,Zhejiang University of Technology;
  • 英文关键词:Metal-organic frameworks;;CO_2 reduction;;Transient absorption;;Photocatalysis;;DFT calculations
  • 中文刊名:JXTW
  • 英文刊名:科学通报(英文版)
  • 机构:Collaborative Innovation Center of Chemistry for Energy Materials,State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry,College of Chemistry and Chemical Engineering,Xiamen University;State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials,Dalian Institute of Chemical Physics,Chinese Academy of Sciences;College of Chemical Engineering,Zhejiang University of Technology;
  • 出版日期:2019-07-25
  • 出版单位:Science Bulletin
  • 年:2019
  • 期:v.64
  • 基金:supported by the National Natural Science Foundation of China (21871224, 21673184, 21431005, and 21390391);; the Fok Ying Tong Education Foundation (151013);; the Fundamental Research Funds for the Central Universities (20720180032)
  • 语种:英文;
  • 页:JXTW201914007
  • 页数:10
  • CN:14
  • ISSN:10-1298/N
  • 分类号:28-37
摘要
Photocatalytic reduction of CO_2 to CO is a promising strategy for reducing atmospheric CO_2 levels and storing solar radiation as chemical energy.Here,we demonstrate that a molecular catalyst[Ni~(Ⅱ)(bpet)(H_2O)_2]successfully encapsulated into a highly robust and visible-light responsive metal–organic framework(Ru-UiO-67)to fabricate composite catalysts for photocatalytic CO_2 reduction.The composite Ni@Ru-UiO-67 photocatalysts show efficient visible-light-driven CO_2 reduction to CO with a TON of 581 and a selectivity of 99% after 20-h illumination,because of the facile electron transfer from Ru-photosensitizer to Ni(Ⅱ)active sites in Ni@Ru-UiO-67 system.The mechanistic insights into photoreduction of CO_2 have been studied based on thermodynamical,electrochemical,and spectroscopic investigation,together with density functional theory(DFT)calculations.This work shows that encapsulating molecular catalyst into photoactive MOF highlights opportunities for designing efficient,stable and recyclable photocatalysts.
        Photocatalytic reduction of CO_2 to CO is a promising strategy for reducing atmospheric CO_2 levels and storing solar radiation as chemical energy.Here,we demonstrate that a molecular catalyst[Ni~(Ⅱ)(bpet)(H_2O)_2]successfully encapsulated into a highly robust and visible-light responsive metal–organic framework(Ru-UiO-67)to fabricate composite catalysts for photocatalytic CO_2 reduction.The composite Ni@Ru-UiO-67 photocatalysts show efficient visible-light-driven CO_2 reduction to CO with a TON of 581 and a selectivity of 99% after 20-h illumination,because of the facile electron transfer from Ru-photosensitizer to Ni(Ⅱ)active sites in Ni@Ru-UiO-67 system.The mechanistic insights into photoreduction of CO_2 have been studied based on thermodynamical,electrochemical,and spectroscopic investigation,together with density functional theory(DFT)calculations.This work shows that encapsulating molecular catalyst into photoactive MOF highlights opportunities for designing efficient,stable and recyclable photocatalysts.
引文
[1]Tu W,Zhou Y,Zou Z.Photocatalytic conversion of CO2into renewable hydrocarbon fuels:state-of-the-art accomplishment,challenges,and prospects.Adv Mater 2014;26:4607-26.
    [2]Dhakshinamoorthy A,Navalon S,Corma A,et al.Photocatalytic CO2reduction by TiO2and related titanium containing solids.Energy Environ Sci2012;5:9217-33.
    [3]Ozin DA.Throwing new light on the reduction of CO2.Adv Mater2015;27:1957-63.
    [4]Kuriki R,Ichibha T,Hongo K,et al.Narrow-gap oxyfluoride photocatalyst for visible-light hydrogen evolution and carbon dioxide reduction.J Am Chem Soc2018;140:6648-55.
    [5]Zhao Y,Liu Z.Recent advances in photocatalytic CO2reduction using earthabundant metal complexes-derived photocatalysts.Chin J Chem2018;36:455-60.
    [6]Wang Y,Huang NY,Shen JQ,et al.Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2reduction.J Am Chem Soc 2018;140:38-41.
    [7]Xu HQ,Hu J,Wang D,et al.Visible-light photoreduction of CO2in a metalorganic framework:boosting electron-hole separation via electron trap states.J Am Chem Soc 2015;137:13440-3.
    [8]Kajiwara T,Fujii M,Tsujimoto M,et al.Photochemical reduction of low concentrations of CO2in a porous coordination polymer with a ruthenium(II)-CO complex.Angew Chem Int Ed 2016;55:2697-700.
    [9]Fu Y,Sun D,Chen Y,et al.An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2reduction.Angew Chem Int Ed 2012;51:3364-7.
    [10]Fujiwara H,Hosokawa H,Murakoshi K,et al.Effect of surface structures on photocatalytic CO2reduction using quantized CdS nanocrystallites.J Phys Chem B 1997;101:8270-8.
    [11]Yan SC,Ouyang SX,Gao J,et al.A room-temperature reactive-template route to mesoporous ZnGa2O4with improved photocatalytic activity in reduction of CO2.Angew Chem Int Ed 2010;49:6400-4.
    [12]Liu Q,Zhou Y,Kou J,et al.High-yield synthesis of ultralong and ultrathin Zn2GeO4nanoribbons toward improved photocatalytic reduction of CO2into renewable hydrocarbon fuel.J Am Chem Soc 2010;132:14385-7.
    [13]Habisreutinger SN,Schmidt-Mende L,Stolarczyk JK.Photocatalytic reduction of CO2on Ti O2and other semiconductors.Angew Chem Int Ed 2013;52:7372-408.
    [14]Takeda H,Ohashi K,Sekine A,et al.Photocatalytic CO2reduction using Cu(I)photosensitizers with a Fe(II)catalyst.J Am Chem Soc 2016;138:4354-7.
    [15]Guo Z,Cheng S,Cometto C,et al.Highly efficient and selective photocatalytic CO2reduction by iron and cobalt quaterpyridine complexes.J Am Chem Soc2016;138:9413-6.
    [16]Ouyang T,Huang HH,Wang JW,et al.A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2reduction to CO in CH3CN/H2O solution.Angew Chem Int Ed2017;56:738-43.
    [17]Chan SLF,Lam TL,Yang C,et al.A robust and efficient cobalt molecular catalyst for CO2reduction.Chem Commun 2015;51:7799-801.
    [18]Hong D,Tsukakoshi Y,Kotani H,et al.Visible-light-driven photocatalytic CO2reduction by a Ni(II)complex bearing a bioinspired tetradentate ligand for selective CO production.J Am Chem Soc 2017;139:6538-41.
    [19]Niu K,Xu Y,Wang H,et al.A spongy nickel-organic CO2reduction photocatalyst for nearly 100%selective CO production.Sci Adv 2017;3:e1700921.
    [20]Cheung PL,Machan CW,Malkhasian AYS,et al.Photocatalytic reduction of carbon dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3.Inorg Chem2016;55:3192-8.
    [21]Takeda H,Koizumi H,Okamoto K,et al.Photocatalytic CO2reduction using a Mn complex as a catalyst.Chem Commun 2014;50:1491-3.
    [22]Wang W,Wang S,Ma X,et al.Recent advances in catalytic hydrogenation of carbon dioxide.Chem Soc Rev 2011;40:3703-27.
    [23]Chen L,Luque R,Li Y.Controllable design of tunable nanostructures inside metal-organic frameworks.Chem Soc Rev 2017;46:4614-30.
    [24]Wu CD,Zhao M.Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis.Adv Mater2017;1605446.
    [25]Zhang ZM,Zhang T,Wang C,et al.Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate.J Am Chem Soc 2015;137:3197-200.
    [26]Kong XJ,Lin Z,Zhang ZM,et al.Hierarchical integration of photosensitizing metal-organic frameworks and nickel-containing polyoxometalates for efficient visible-light-driven hydrogen evolution.Angew Chem Int Ed2016;55:6411-6.
    [27]Trickett CA,Helal A,Al-Maythalony BA,et al.The chemistry of metal-organic frameworks for CO2capture,regeneration and conversion.Nat Rev Mater2017;2:17045.
    [28]Zhang S,Li L,Zhao S,et al.Hierarchical metal-organic framework nanoflowers for effective CO2transformation driven by visible light.J Mater Chem A2015;3:15764-8.
    [29]Adhikary B,Liu S,Lucas CR.Comparative studies of mononuclear nickel(II)complexes with N2Sx(x=2-4)Ligands.Inorg Chem 1993;32:5957.
    [30]Xie PH,Hou YJ,Zhang BW,et al.Spectroscopic and electrochemical properties of ruthenium(II)polypyridyl complexes.J Chem Soc Dalton Trans1999:4217-21.
    [31]Yan ZH,Du MH,Liu J,et al.Photo-generated dinuclear{Eu(II)}2active sites for selective CO2reduction in a photosensitizing metal-organic framework.Nat Commun 2018;9:3353.
    [32]An B,Zhang J,Cheng K,et al.Confinement of ultrasmall Cu/ZnOxnanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2.J Am Chem Soc 2017;139:3834-40.
    [33]Zhang HL,Evans SD,Henderson JR,et al.Spectroscopic characterization of gold nanoparticles passivated by mercaptopyridine and mercaptopyrimidine derivatives.J Phys Chem B 2003;107:6087-95.
    [34]Wang C,Shang J,Lan Y,et al.Metal-organic polyhedra cages immobilized on a plasmonic substrate for sensitive detection of trace explosives.Adv Funct Mater 2015;25:6009-17.
    [35]Biesinger MC,Payne BP,Grosvenor AP,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Cr,Mn,Fe,Co and Ni.Appl Surface Sci 2011;257:2717-30.
    [36]Nesbitt HW,Legrand D,Bancroft GM.Interpretation of Ni 2p XPS spectra of Ni conductors and Ni insulators.Phys Chem Miner 2000;27:357-66.
    [37]Tamaki Y,Ishitani O.Supramolecular photocatalysts for the reduction of CO2.ACS Catal 2017;7:3394-409.
    [38]Chen EX,Qiu M,Zhang YF,et al.Acid and base resistant zirconium polyphenolate-metalloporphyrin scaffolds for efficient CO2photoreduction.Adv Mater 2018;30:1704388.
    [39]Zhang H,Wei J,Dong J,et al.Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework.Angew Chem Int Ed 2016;55:14310-4.
    [40]Tamaki Y,Koike K,Morimoto T,et al.Substantial improvement in the efficiency and durability of a photocatalyst for carbon dioxide reduction using a benzoimidazole derivative as an electron donor.J Catal 2013;304:22-8.
    [41]Grapperhaus CA,Mullins CS,Kozlowski PM,et al.Synthesis and oxygenation of a nickel(II)and zinc(II)dithiolate:an experimental and theoretical comparison.Inorg Chem 2004;43:2859-66.
    [42]Wang F,Wang WG,Wang HY,et al.Artificial photosynthetic systems based on[FeFe]-hydrogenase mimics:the road to high efficiency for light-driven hydrogen evolution.ACS Catal 2012;2:407-16.
    [43]Liao WM,Zhang JH,Wang Z,et al.Post-synthetic exchange(PSE)of UiO-67frameworks by Ru/Rh half-sandwich units for visible-light-driven H2evolution and CO2reduction.J Mater Chem A 2018;6:11337-45.
    [44]Yang S,Pattengale B,Lee S,et al.Real-time visualization of active species in a single-site metal-organic framework photocatalyst.ACS Energy Lett2018;3:532-9.
    [45]Pattengale B,Ludwig J,Huang J.Atomic insight into the W-doping effect on carrier dynamics and photoelectrochemical properties of BiVO4photoanodes.JPhys Chem C 2016;120:1421-7.
    [46]Anisimo VI,Aryasetiawan F,Lichtenstein IA.First-principles calculations of the electronic structure and spectra of strongly correlated systems:the LDA+Umethod.J Phys Condens Matter 1997;9:767-808.
    [47]Nakajima T,Tamaki Y,Ueno K,et al.Photocatalytic Reduction of Low Concentration of CO2.J Am Chem Soc 2016;138:13818-21382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700