Thermokinetic and conductivity analyzes of the high CO_2 chemisorption on Li_5AlO_4 and alkaline carbonate impregnated Li_5AlO_4 samples: Effects produced by the use of CO_2 partial pressures and oxygen addition
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermokinetic and conductivity analyzes of the high CO_2 chemisorption on Li_5AlO_4 and alkaline carbonate impregnated Li_5AlO_4 samples: Effects produced by the use of CO_2 partial pressures and oxygen addition
  • 作者:Pedro ; Sánchez-Camacho ; J.Francisco ; Gómez-García ; Heriberto ; Pfeiffer
  • 英文作者:Pedro Sánchez-Camacho;J.Francisco Gómez-García;Heriberto Pfeiffer;Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autońoma de Mexico;
  • 英文关键词:CO2 capture;;Thermogravimetric analysis;;Partial pressure;;Ionic conduction
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autońoma de Mexico;
  • 出版日期:2017-09-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2017
  • 期:v.26
  • 基金:financially supported by the projects PAPIITUNAM (IN-101916);; SENER-CONACYT (251801);; CONACYT;; DGAPA-UNAM for financial support
  • 语种:英文;
  • 页:TRQZ201705012
  • 页数:8
  • CN:05
  • ISSN:10-1287/O6
  • 分类号:111-118
摘要
The effect of CO_2 partial pressure was evaluated during the CO_2 chemisorption in penta lithium aluminate(Li_5AlO_4), using different CO_2 and O_2 partial pressures in the presence or absence of alkaline carbonates. Results showed that using low PO_2(0.1) did not affect the kinetic and final CO_2 chemisorption process. Moreover, small additions of oxygen(PO_2= 0.05) into the mixture flue gas, seemed to increase the CO_2 chemisorption. Additionally, the presence of alkaline carbonates modified the CO_2 capture temperature range. CO_2 chemisorption kinetic parameters were determined assuming a double exponential model where direct CO_2 chemisorption and CO_2 chemisorption controlled by diffusion processes are considered.Finally, ionic diffusion was analyzed by ionic conduction analysis, where all the gravimetric and ionic measurements were in good agreement showing different diffusion processes depending on temperature.Finally, the oxygen and alkaline carbonate additions have positive effects during the CO_2 chemisorption process in Li_5AlO_4, and a possible reaction mechanism is presented.
        The effect of CO_2 partial pressure was evaluated during the CO_2 chemisorption in penta lithium aluminate(Li_5AlO_4), using different CO_2 and O_2 partial pressures in the presence or absence of alkaline carbonates. Results showed that using low PO_2(0.1) did not affect the kinetic and final CO_2 chemisorption process. Moreover, small additions of oxygen(PO_2= 0.05) into the mixture flue gas, seemed to increase the CO_2 chemisorption. Additionally, the presence of alkaline carbonates modified the CO_2 capture temperature range. CO_2 chemisorption kinetic parameters were determined assuming a double exponential model where direct CO_2 chemisorption and CO_2 chemisorption controlled by diffusion processes are considered.Finally, ionic diffusion was analyzed by ionic conduction analysis, where all the gravimetric and ionic measurements were in good agreement showing different diffusion processes depending on temperature.Finally, the oxygen and alkaline carbonate additions have positive effects during the CO_2 chemisorption process in Li_5AlO_4, and a possible reaction mechanism is presented.
引文
[1]K.Oh-Ishi,Y.Matsukura,T.Okumura,Y.Matsunaga,R.Kobayashi,J.Solid State Chem.211(2014)162–169.
    [2]M.Puccini,E.Stefanelli,M.Seggiani,S.Vitolo,Chem.Eng.Trans.47(2016)139–144.
    [3]A.Iwan,H.Stephenson,W.C.Ketchie,A.A.Lapkin,Chem.Eng.J.146(2009)249–258.
    [4]M.Xie,Z.Zhou,Y.Qi,Z.Cheng,W.Yuan,Chem.Eng.J.207–208(2012)142–150.
    [5]X.Yang,W.Liu,J.Sun,Y.Hu,W.Wang,H.Chen,Y.Zhang,X.Li,M.Xu,ChemSus Chem 9(2016)1607–1613.
    [6]E.Ochoa-Fernández,T.Zhao,M.R?nning,D.Chen,J.Environ.Eng.135(2009)397–403.
    [7]H.K.Rusten,E.Ochoa-Fernández,H.Lindborg,D.Chen,H.A.Jakobsen,Ind.Eng.Chem.Res.46(2007)8729–8737.
    [8]R.Rodríguez-Mosqueda,H.Pfeiffer,J.Phys.Chem.A 114(2010)4535–4541.
    [9]M.Nomura,T.Sakanishi,Y.Nishi,K.Utsumi,R.Nakamura,Ener.Procedia 37(2013)1004–1011.
    [10]M.Seggiani,M.Puccini,S.Vitolo,Int.J.Greenh.Gas Control 5(2011)741–748.
    [11]I.C.Romero-Ibarra,J.Ortiz-Landeros,H.Pfeiffer,Thermochim.Acta 567(2013)118–124.
    [12]Y.Duan,H.Pfeiffer,B.Li,I.C.Romero-Ibarra,D.C.Sorescu,D.R.Luebke,J.W.Halley,Phys.Chem.Chem.Phys.15(2013)13538–13558.
    [13]L.M.Palacios-Romero,H.Pfeiffer,Chem.Lett.37(2008)862–863.
    [14]Y.Matsukura,T.Okumura,R.Kobayashi,K.Oh-Ishi,Chem.Lett.39(2010)966–967.
    [15]K.Nakagawa,J.Electrochem.Soc.145(1998)1344–1346.
    [16]H.Pfeiffer,P.Bosch,Chem.Mater.17(2005)1704–1710.
    [17]B.N.Nair,R.P.Burwood,V.J.Goh,K.Nakagawa,T.Yamaguchi,Prog.Mater.Sci.54(2009)511–541.
    [18]Q.Xiao,X.Tang,Y.Liu,Y.Zhong,W.Zhu,Chem.Eng.J.174(2011)231–235.
    [19]T.Avalos-Rendón,J.Casa-Madrid,H.Pfeiffer,J.Phys.Chem.A 113(2009)6919–6923.
    [20]T.Avalos-Rendón,V.H.Lara,H.Pfeiffer,Ind.Eng.Chem.Res.51(2012)2622–2630.
    [21]S.M.Amorim,M.D.Domenico,T.L.P.Dantas,H.J.José,R.F.P.M.Moreira,Chem.Eng.J.283(2016)388–396.
    [22]Q.Feng,X.Xu,X.Zeng,G.Lv,J.Deng,W.Ma,Y.Zhou,Current Environ.Eng.2(2015)127–131.
    [23]S.Jeoung,J.H.Lee,Y.Kim,H.R.Moon,Thermochim.Acta 637(2016)31–37.
    [24]Q.Guan,X.Chen,T.Gao,C.Xiao,L.Zhao,J.He,X.Long,J.Nucl.Mater.465(2015)170–176.
    [25]I.Alcérreca-Corte,E.Fregoso-Israel,H.Pfeiffer,J.Phys.Chem.C 112(2008)6520–6525.
    [26]L.Martínez-dl Cruz,H.Pfeiffer,Ind.Eng.Chem.Res.49(2010)9038–9042.
    [27]H.R.Radfarnia,M.C.Iliuta,Sep.Purif.Technol.93(2012)98–106.
    [28]H.G.Jo,H.J.Yoon,C.H.Lee,K.B.Lee,Ind.Eng.Chem.Res.55(2016)3833–3839.
    [29]Q.Xiao,Y.Liu,Y.Zhong,W.Zhu,J.Mater.Chem.21(2011)3838–3842.
    [30]M.T.Flores-Martínez,H.Pfeiffer,Greenh.Gas.Scien.Technol.5(2015)802–811.
    [31]J.Ortiz-Landeros,T.Norton,Y.S.Lin,Chem.Eng.Sci.104(2013)891–898.
    [32]S.Lowell,J.E.Shields,M.A.Thomas,M.Thommes,Characterization of Porous Solids and Powders:Surface Area,Pore Size and Density,Kluwer Academic Publishers,London,2004.
    [33]L.Martinez-dl Cruz,H.Pfeiffer,J.Phys.Chem.C 116(2012)9675–9680.
    [34]L.Lei,D.He,Z.Yongtao,W.Zhang,Z.Wang,M.Jiang,M.Du,J.Solid State Chem.181(2008)1810–1815.
    [35]J.Ortiz-Landeros,T.L.ávalos-Rendón,C.Gómez-Yá?ez,H.Pfeiffer,J.Therm.Anal.Calor.108(2012)647–655.
    [36]B.Alcántar-Vázquez,C.Diaz,I.C.Romero-Ibarra,E.Lima,H.Pfeiffer,J.Phys.Chem.C 117(2013)16483–16491.
    [37]A.Peters,C.Korte,D.Hesse,N.Zakharov,J.Janek,Solid State Ion.178(2007)67–76.
    [38]T.V.S.L.Satyavani,B.Ramya-Kiran,V.Rajesh-Kumar,S.A.Kumar,S.V.Naidu,Eng.Sci.Technol.Int.J.19(2016)40–44.
    [39]R.J.D.Tilley,Defects in Solids,John Wiley&Sons,Inc.,London,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700