Synthesis and evaluation as CO_2 chemisorbent of the Li_5(Al_(1-x)Fe_x)O_4 solid solution materials: Effect of oxygen addition
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and evaluation as CO_2 chemisorbent of the Li_5(Al_(1-x)Fe_x)O_4 solid solution materials: Effect of oxygen addition
  • 作者:Paulina ; Olavarría ; Elizabeth ; Vera ; Enrique ; J.Lima ; Heriberto ; Pfeiffer
  • 英文作者:Paulina Olavarría;Elizabeth Vera;Enrique J.Lima;Heriberto Pfeiffer;Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autońoma de Mexico;
  • 英文关键词:Lithium aluminate;;CO2 chemisorption;;Solid solution;;Thermogravimetry
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autońoma de Mexico;
  • 出版日期:2017-09-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2017
  • 期:v.26
  • 基金:financially supported by the Project SENERCONACYT (251801);; CONACYT for financial support through the CONACYT-SNI research assistant system and PNPC-CONACYT, respectively
  • 语种:英文;
  • 页:TRQZ201705016
  • 页数:8
  • CN:05
  • ISSN:10-1287/O6
  • 分类号:140-147
摘要
Pentalithium aluminate(β-Li_5AlO_4) and the corresponding iron-containing solid solution(Li_5(Al_(1-x)Fe_x)O_4)were synthetized by solid-state reaction. All the samples were characterized structural and microstructurally by X-ray diffraction, solid-state nuclear magnetic resonance, scanning electron microscopy, N_2 adsorption-desorption and temperature-programmed desorption of CO_2. Results showed that 30 mol% of iron can be incorporated into the β-Li_5AlO_4 crystalline structure at aluminum positions. Moreover, iron addition induced morphological and superficial reactivity variations. Li_5(Al_(1-x)Fe_x)O_4 samples chemisorbed CO_2 between 200 and 700 °C, where the superficial chemisorption presented the highest enhancement,in comparison to β-Li_5AlO _4. Additionally, Li_5(Al_(1-x)Fe_x)O_4 samples sintered at higher temperatures thanβ-Li_5AlO_4. Isothermal CO_2 chemisorption experiments of β-Li_5AlO_4 and Li_5(Al_(1-x)Fe_x)O_4 were fitted to a first order reaction model, corroborating that iron enhances the CO_2 chemisorption, kinetically. When oxygen was added to the gas flow, CO_2 chemisorption process was mainly enhanced between 400 and 600 °C for the Li_5(Al_(0.8)Fe_(0.2))O_4 sample in comparison to β-Li_5AlO_4. Hence, Li_5(Al_(1-x)Fe_x)O_4 solid solution presented an enhanced CO_2 chemisorption process, in the presence and absence of oxygen, in comparison to β-Li_5AlO_4.
        Pentalithium aluminate(β-Li_5AlO_4) and the corresponding iron-containing solid solution(Li_5(Al_(1-x)Fe_x)O_4)were synthetized by solid-state reaction. All the samples were characterized structural and microstructurally by X-ray diffraction, solid-state nuclear magnetic resonance, scanning electron microscopy, N_2 adsorption-desorption and temperature-programmed desorption of CO_2. Results showed that 30 mol% of iron can be incorporated into the β-Li_5AlO_4 crystalline structure at aluminum positions. Moreover, iron addition induced morphological and superficial reactivity variations. Li_5(Al_(1-x)Fe_x)O_4 samples chemisorbed CO_2 between 200 and 700 °C, where the superficial chemisorption presented the highest enhancement,in comparison to β-Li_5AlO _4. Additionally, Li_5(Al_(1-x)Fe_x)O_4 samples sintered at higher temperatures thanβ-Li_5AlO_4. Isothermal CO_2 chemisorption experiments of β-Li_5AlO_4 and Li_5(Al_(1-x)Fe_x)O_4 were fitted to a first order reaction model, corroborating that iron enhances the CO_2 chemisorption, kinetically. When oxygen was added to the gas flow, CO_2 chemisorption process was mainly enhanced between 400 and 600 °C for the Li_5(Al_(0.8)Fe_(0.2))O_4 sample in comparison to β-Li_5AlO_4. Hence, Li_5(Al_(1-x)Fe_x)O_4 solid solution presented an enhanced CO_2 chemisorption process, in the presence and absence of oxygen, in comparison to β-Li_5AlO_4.
引文
[1]S.Choi,J.H.Drese,C.W.Jones,Chem Sus Chem 2(2009)796–854.
    [2]L.K.G.Bhatta,S.Subramanyam,M.D.Chengala,S.Olivera,K.Vnkatesh,J.Cleaner Prod 103(2015)171–196.
    [3]M.T.Dunstan,A.Jain,W.Liu,S.P.Ong,T.Liu,J.Lee,K.A.Persson,S.A.Scott,J.S.Dennis,C.P.Grey,Energy Environ.Sci 9(2016)1346–1360.
    [4]K.O.Yoro,P.T.Sekoai,Environments 2(2016)1–20.
    [5]S.Y.Lee,S.J.Park,J.Ind.Eng.Chem.23(2015)1–11.
    [6]S.Kumar,S.K.Saxena,Mater.Renew.Sustain.Energy 30(2014)1–15.
    [7]B.N.Nair,R.P.Burwood,V.J.Goh,K.Nakagawa,T.Yamaguchi,Prog.Mater.Sci.54(2009)511–541.
    [8]Q.Zhang,D.Peng,S.Zhang,Q.Ye,Y.Wu,Y.Ni,AICh E J.63(2017)2153–2164.
    [9]M.B.I.Chowdhury,M.R.Quddus,H.I.de Lasa,Chem.Eng.J.232(2013)139–148.
    [10]M.R.Quddus,M.B.I.Chowdhury,H.I.de Lasa,Chem.Eng.J.260(2015)347–356.
    [11]K.Wang,W.Li,Z.Yin,Z.Zhou,P.Zhao,Energy&Fuels(2017),doi:10.1021/acs.energyfuels.6b03453.
    [12]J.S.Lee,C.T.Yavuz,Ind.Eng.Chem.Res.56(2017)3413–3417.
    [13]H.Kim,H.D.Jang,M.Choi,Chem.Eng.J.280(2015)132–137.
    [14]K.Wang,Z.Yin,P.Zhao,Ceram.Int.42(2016)2990–2999.
    [15]S.M.Amorim,M.D.Domenico,T.L.P.Dantas,H.J.José,R.F.P.M.Moreira,Chem.Eng.J.283(2016)388–396.
    [16]Y.Duan,J.Lekse,Phys.Chem.Chem.Phys.17(2015)22543–22547.
    [17]Q.Xiao,X.Tang,Y.Liu,Y.Zhong,W.Zhu,Front.Chem.Sci.Eng.7(2013)297–302.
    [18]X.Guo,L.Ding,J.Ren,H.Yang,J.Sol-Gel Sci.Technol.81(2017)844–849.
    [19]H.R.Radfarnia,C.Iliuta,Ind.Eng.Chem.Res.50(2011)9295–9305.
    [20]L.Martínez-dl Cruz,H.Pfeiffer,J.Phys.Chem.C 116(2012)9675–9680.
    [21]T.Zhao,M.Ronning,D.Chen,J.Energy Chem.22(2013)387–393.
    [22]H.G.Jo,H.J.Yoon,C.H.Lee,K.B.Lee,Ind.Eng.Chem.Res.55(2016)3833–3839.
    [23]H.R.Radfarnia,C.Iliuta,Separ.Purif.Technol.93(2012)98–106.
    [24]G.Ji,M.Z.Memon,H.Zhuo,M.Zhao,Chem.Eng.J.313(2017)646–654.
    [25]K.M.Ooi,S.P.Chai,A.R.Mohamed,M.Mohammadi,Asia-Pac.J.Chem.Eng.10(2015)565–579.
    [26]T.ávalos-Rendón,H.Pfeiffer,Energy&Fuels 26(2012)3110–3114.
    [27]P.V.Karaoke,A.G.Gaikwad,Front.Chem.Sci.Eng.5(2011)215–226.
    [28]G.Tilekar,K.Shinde,K.Kale,R.Raskar,A.Gaikwad,Front.Chem.Sci.Eng.5(2011)477–491.
    [29]T.ávalos-Rendón,J.Casa-Madrid,H.Pfeiffer,J.Phys.Chem.A 113(2009)6919–6923.
    [30]F.Stewner,R.Hoppe,Zeit.Anorg.Allgem.Chem.381(1971)149–160.
    [31]T.ávalos-Rendón,V.H.Lara,H.Pfeiffer,Ind.Eng.Chem.Res.51(2012)2622–2630.
    [32]P.V.Subha,B.N.Nair,P.Hareesh,A.P.Mohamed,T.Yamaguchi,K.G.K.Warrier,U.S.Hareesh,J.Phys.Chem.C 119(2015)5319–5326.
    [33]X.Chen,Z.Xiong,Y.Qin,B.Gong,C.Tian,Y.Zhao,J.Zhang,C.Zheng,Int.J.Hydrogen Energy 41(2016)13077–13085.
    [34]K.Kanki,H.Maki,M.Mizuhata,Int.J.Hydrogen Energy 41(2016)18893–18899.
    [35]M.Xiang,Y.Zhang,M.Hong,S.Liu,Y.Zhang,H.Liu,C.Gu,J.Mater.Sci.50(2015)4698–4706.
    [36]S.Zhang,Q.Zhang,C.Shen,Y.Ni,Y.Wu,Q.Wu,Z.Zhu,Ind.Eng.Chem.Res.54(2015)7292–7300.
    [37]S.Zhang,M.B.I.Chowdhury,Q.Zhang,H.I.de-Lasa,Ind.Eng.Chem.Res.55(2016)12524–12531.
    [38]C.Gauer,W.Heschel,J.Mater.Sci.41(2006)2405–2409.
    [39]Q.Feng,X.Xu,X.Zeng,G.Lv,J.Deng,W.Ma,Y.Zhou,Curr.Environ.Eng 2(2015)127–131.
    [40]J.Ortiz-Landeros,C.Gómez-Yá?ez,L.M.Palacios-Romero,E.Lima,H.Pfeiffer,J.Phys.Chem.A 116(2012)3163–3171.
    [41]H.A.Lara-García,H.Pfeiffer,Chem.Eng.J.313(2017)1288–1294.
    [42]M.S.Yanchesmeh,H.R.Radfarnia,M.C.Iliuta,Chem.Eng.J.283(2016)420–444.
    [43]B.Alcantar-Vazquez,Y.Duan,H.Pfeiffer,Ind.Eng.Chem.Res.55(2016)9880–9886.
    [44]E.Ochoa-Fernández,H.K.Runsten,H.A.Jakobsen,M.Ronning,A.Holmen,D.Chen,Catal.Today 106(2005)41–46.
    [45]J.Rouquerol,F.Rouquerol,K.Sing,Adsorption by Powders&Porous Solids,Academic Press,London,1999.
    [46]P.Sánchez-Camacho,I.C.Romero-Ibarra,Y.Duan,H.Pfeiffer,J.Phys.Chem.C118(2014)19822–19832.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700