安徽某铁矿不同矿山废水库中微生物群落结构特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microbial community structure characteristics in different mine drainage lakes of an iron mine in Anhui Province
  • 作者:曹子敏 ; Joseph ; Frazer ; Banda ; 裴理鑫 ; 卫朋飞 ; 辛瑞瑞 ; 董慧渊 ; 郝春博
  • 英文作者:Zimin Cao;Joseph Frazer BandDa;Lixin Pei;Pengfei Wei;Ruirui Xin;Huiyuan Dong;Chunbo Hao;School of Water Resources and Environment, China University of Geosciences;
  • 关键词:矿山废水 ; 高通量测序 ; 嗜酸菌 ; 群落结构
  • 英文关键词:mine drainage;;high-throughput sequencing;;acidophile;;microbial community structure
  • 中文刊名:WSXB
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:中国地质大学(北京)水资源与环境学院;
  • 出版日期:2019-05-13 10:52
  • 出版单位:微生物学报
  • 年:2019
  • 期:v.59;No.350
  • 基金:中央高校基本科研业务费项目(2652015114)~~
  • 语种:中文;
  • 页:WSXB201906009
  • 页数:13
  • CN:06
  • ISSN:11-1995/Q
  • 分类号:104-116
摘要
【目的】研究安徽某铁矿不同矿山废水库中微生物群落结构特征及其影响因素。【方法】对比分析了该铁矿3个大型废水库的地球化学特征,并用高通量测序技术研究了水体中微生物群落组成,进而用统计学方法解析了环境因子对微生物群落结构的影响。【结果】3个废水库中有2个为酸性,1个为中性,理化性质有明显的差异。近年形成的塌方采场废水库(TF) pH仅为2.55±0.01,Fe浓度高达154.95±0.78mg/L,SO_4~(2–)浓度为3374.86±3.81mg/L;形成于20世纪70年代的排土场废水库(PT)酸性略弱(pH 2.9±0.02),Fe浓度(34.57±4.00 mg/L)与TF相比明显降低,SO_4~(2–)浓度则高达10398.98±626.70 mg/L;东沙采场废水库(DS)则为中性(pH7.55),但SO_4~(2–)仍高达4162.99mg/L,主要的金属离子为Mg(594.90 mg/L)、Ca (650.10 mg/L)。3个废水库的原核生物多样性随pH的升高而升高。两个酸性废水库的原核生物组成较为接近,但TF的化能自养菌含量较高(69.54%±2.89%),PT的化能异养菌含量较高(64.45%±13.81%)。自养铁氧化菌Ferrovum在TF中的比例高达(64.17±1.84)%,在PT中则下降为(35.39±13.74)%。但PT中含有丰富的化能异养嗜酸菌如Acidicapsa(15.75%±3.99%)、Acidiphilium(10.65%±2.05%)、Acidisphaera (6.34%±1.02%)等。DS中虽然也含有较高的金属离子和SO_4~(2–),但其中的原核生物组成与TF和PT截然不同,主要为Limnohabitans (18.47%)、Rhodobacter (8.42%)等。3个废水库的真核生物群落主要由藻类组成,酸水库TF和PT中主要为棕鞭藻属(Ochromonas)和胶球藻属(Coccomyxa),棕鞭藻属在TF中(53.65%±2.02%)占优势,胶球藻属在PT中(68.84±10.4%)占优势,中性废水库DS中则主要是小环藻属(Cyclotella)(49.85%)。经统计学分析,pH是影响矿山废水微生物多样性和群落组成的主要环境因素。
        [Objective] To study the prokaryotic and eukaryotic community structure and the physicochemical factors influencing their distribution in three mine wastewater lakes from a pyrite mine in Anhui Province.[Methods] Geochemical analysis characteristics of three wastewater lakes were measured, and microbial community compositions of the lakes were studied using high-throughput sequencing. The relationship between microbial community structure and environmental factors was also analyzed based on statistical methods. [Results]Samples from three wastewater lakes included two acidic and one neutral, with significant differences in physicochemical properties. Lake TF, typically acidic, formed about 5 years ago and is characterized by low pH(2.55±0.01), Fe(154.95±0.78 mg/L) and SO_4~(2–)(3374.86±3.81 mg/L). Lake PT is also acidic, pH(2.9±0.02),however, it formed in the 1970's, and has significantly lower Fe(34.57±4.00 mg/L) and higher SO_4~(2–)(10398.98±626.70 mg/L) than lake TF. Lake DS is neutral(freshwater), characterized by pH(7.55), high content of SO_4~(2–)(4162.99 mg/L), while other main metal ions detected were Mg(594.90 mg/L) and Ca(650.10 mg/L). It was observed that the prokaryotic biodiversity of the three wastewater lakes generally increased with increasing pH. The prokaryotic composition of the two acidic wastewater lakes was relatively close. However, lake TF was dominated by autotrophic iron oxidizing bacteria(69.54%±2.89%), while lake PT by heterotrophic bacteria(64.45%±13.81%).The ratio of autotrophic iron oxidizing bacteria Ferrovum in TF was(64.17±1.84)%, and it decreased to(35.39±13.74)% in PT. However, heterotrophic bacteria were abundant in PT as observed by the distribution of Acidicapsa(15.75%±3.99%), Acidiphilium(10.65%±2.05%), and Acidisphaera(6.34%±1.02%). Lake DS had a typically distinct microbial community compared to acid lakes(TF and PT) despite of a high content SO_4~(2–). Lake DS had an abundance of Limnohabitans(18.47%) and Rhodobacter(8.42%). The eukaryotic community of three wastewater lakes was mainly composed of algae. The acidic lakes(TF and PT) were mainly populated by Ochromonas and Coccomyxa, accounting for(53.65%±2.02%) in TF and(68.84%±10.4%) in PT respectively. Lake DS was mainly characterized by Cyclotella(49.85%). From our analyses of physicochemical factors, we found that pH was the main factor affecting microbial community composition in acidic wastewater lakes.
引文
[1]Blodau C.A review of acidity generation and consumption in acidic coal mine lakes and their watersheds.Science of the Total Environment,2006,369(1/3):307-332.
    [2]Deng C,Chen YZ,Li Y.Review of research on mine wastewater treatment.Chemical Intermediate,2017,(11):57-58.(in Chinese)邓川,陈韵竹,李瑶.矿山废水处理的研究综述.当代化工研究,2017,(11):57-58.
    [3]Baker BJ,Banfield JF.Microbial communities in acid mine drainage.FEMS Microbiology Ecology,2003,44(2):139-152.
    [4]Dai X,Huang JX,Guo SX.Research on treatment of mine tailings wastewater by alkaline oxidation process.Architectural Engineering Technology and Design,2017,(30):1778.(in Chinese)戴汛,黄家新,郭胜祥.碱性氧化法处理矿山尾矿库废水技术研究.建筑工程技术与设计,2017,(30):1778.
    [5]Johnson DB.Acidophilic microbial communities:candidates for bioremediation of acidic mine effluents.International Biodeterioration&Biodegradation,1995,35(1/3):41-58.
    [6]Bruneel O,Volant A,Gallien S,Chaumande B,Casiot C,Carapito C,Bardil A,Morin G,Brown Jr GE,Personne CJ,Le Paslier D,Schaeffer C,van Dorsselaer A,Bertin PN,Elbaz-Poulichet F,Arsene-Ploetze F.Characterization of the active bacterial community involved in natural attenuation processes in arsenic-rich creek sediments.Microbial Ecology,2011,61(4):793-810.
    [7]Singer PC,Stumm W.Acidic mine drainage:the rate-determining step.Science,1970,167(3921):1121-1123.
    [8]Méndez-García C,Peláez AI,Mesa V,Sánchez J,Golyshina OV,Ferrer M.Microbial diversity and metabolic networks in acid mine drainage habitats.Frontiers in Microbiology,2015,6:475.
    [9]Hao CB,Wei PF,Pei LX,Du ZR,Zhang Y,Lu YC,Dong HL.Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province,China.Environmental Pollution,2017,223:507-516.
    [10]Hou WG,Wang S,Dong HL,Jiang HC,Briggs BR,Peacock JP,Huang QY,Huang LQ,Wu G,Zhi XY,Li WJ,Dodsworth JA,Hedlund BP,Zhang CL,Hartnett HE,Dijkstra P,Hungate BA.A comprehensive census of microbial diversity in hot springs of Tengchong,Yunnan Province China using 16SrRNA gene pyrosequencing.PLoS One,2013,8(1):e53350.
    [11]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法.第4版.北京:中国环境科学出版社,2002.
    [12]Caporaso JG,Lauber CL,Walters WA,Berg-Lyons D,Huntley J,Fierer N,Owens SM,Betley J,Fraser L,Bauer M,Gormley N,Gilbert JA,Smith G,Knight R.Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.The ISME Journal,2012,6(8):1621-1624.
    [13]Wang GH,Liu JJ,Yu ZH,Wang XZ,Jin J,Liu XB.Research progress of Acidobacteria ecology in soils.Biotechnology Bulletin,2016,32(2):14-20.(in Chinese)王光华,刘俊杰,于镇华,王新珍,金剑,刘晓冰.土壤酸杆菌门细菌生态学研究进展.生物技术通报,2016,32(2):14-20.
    [14]Johnson DB,Hallberg KB,Hedrich S.Uncovering a microbial enigma:isolation and characterization of the streamer-generating,iron-oxidizing,acidophilic bacterium“Ferrovum myxofaciens”.Applied and Environmental Microbiology,2014,80(2):672-680.
    [15]Hallberg KB,Coupland K,Kimura S,Johnson DB.Macroscopic streamer growths in acidic,metal-rich mine waters in north wales consist of novel and remarkably simple bacterial communities.Applied and Environmental Microbiology,2006,72(3):2022-2030.
    [16]Heinzel E,Hedrich S,Janneck E,Glombitza F,Seifert J,Schl?mann M.Bacterial diversity in a mine water treatment plant.Applied and Environmental Microbiology,2009,75(3):858-861.
    [17]Hiraishi A,Imhoff JF.Genus Acidiphilium//Boone DR,Castenholz RW,Garrity GM.Bergey’s Manual of Systematic Bacteriology.2nd ed.New York:Springer,2005:54-62.
    [18]Küsel K,Roth U,Drake HL.Microbial reduction of Fe(III)in the presence of oxygen under low pH conditions.Environmental Microbiology,2002,4(7):414-421.
    [19]Falagán C,Foesel B,Johnson B.Acidicapsa ferrireducens sp.nov.,Acidicapsa acidiphila sp.nov.,and Granulicella acidiphila sp.nov.:novel acidobacteria isolated from metal-rich acidic waters.Extremophiles,2017,21(3):459-469.
    [20]Kulichevskaya IS,Kostina LA,Valá?kováV,Rijpstra WIC,DamstéJSS,de Boer W,Dedysh SN.Acidicapsa borealis gen.nov.,sp.nov.and Acidicapsa ligni sp.nov.,subdivision 1Acidobacteria from Sphagnum peat and decaying wood.International Journal of Systematic and Evolutionary Microbiology,2012,62(7):1512-1520.
    [21]Schrenk MO,Edwards KJ,Goodman RM,Hamers RJ,Banfield JF.Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:implications for generation of acid mine drainage.Science,1998,279(5356):1519-1522.
    [22]Hahn MW,KasalickyV,Jezbera J,Brandt U,JezberováJ,?imek K.Limnohabitans curvus gen.nov.,sp.nov.,a planktonic bacterium isolated from a freshwater lake.International Journal of Systematic and Evolutionary Microbiology,2010,60(6):1358-1365.
    [23]?imek K,KasalickyV,Jezbera J,JezberováJ,Hejzlar J,Hahn MW.Broad habitat range of the phylogenetically narrow R-BT065 cluster,representing a core group of the Betaproteobacterial Genus Limnohabitans.Applied and Environmental Microbiology,2010,76(3):631-639.
    [24]?imek K,KasalickyV,Jezbera J,Horňák K,Nedoma J,Hahn MW,Bass D,Jost S,Boenigk J.Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria.The ISME Journal,2013,7(8):1519-1530.
    [25]Imhoff JF,Trüper HG,Pfennig N.Rearrangement of the species and genera of the phototrophic“purple nonsulfur bacteria”.International Journal of Systematic and Evolutionary Microbiology,1984,34(3):340-343.
    [26]Schmidtke A,Bell EM,Weithoff G.Potential grazing impact of the mixotrophic flagellate Ochromonas sp.(Chrysophyceae)on bacteria in an extremely acidic lake.Journal of Plankton Research,2006,28(11):991-1001.
    [27]Barcyt?D,NedbalováL.Coccomyxa:a dominant planktic alga in two acid lakes of different origin.Extremophiles,2017,21(2):245-257.
    [28]Ozkan A,Rorrer GL.Effects of light intensity on the selectivity of lipid and chitin nanofiber production during photobioreactor cultivation of the marine diatom Cyclotella sp.Algal Research,2017,25:216-227.
    [29]Abou-Shanab RAI,El-Dalatony MM,El-Sheekh MM,Ji MK,Salama ES,Kabra AN.Cultivation of a new microalga,Micractinium reisseri,in municipal wastewater for nutrient removal,biomass,lipid,and fatty acid production.Biotechnology and Bioprocess Engineering,2014,19(3):510-518.
    [30]Chen LX,Li JT,Chen YT,Huang LN,Hua ZS,Hu M,Shu WS.Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings.Environmental Microbiology,2013,15(9):2431-2444.
    [31]Johnson DB,Hallberg KB.The microbiology of acidic mine waters.Research in Microbiology,2003,154(7):466-473.
    [32]Hallberg KB.New perspectives in acid mine drainage microbiology.Hydrometallurgy,2010,104(3/4):448-453.
    [33]Quatrini R,Johnson DB.Microbiomes in extremely acidic environments:functionalities and interactions that allow survival and growth of prokaryotes at low pH.Current Opinion in Microbiology,2018,43:139-147.
    [34]Pei LX,Lu QY,Hao CB,Du ZR,Lu YC,Zhang F.Shifts of the microbial community structure of an acid mine drainage from summer to autumn in Anhui Province.Acta Scientiae Circumstantiae,2016,36(7):2397-2407.(in Chinese)裴理鑫,鲁青原,郝春博,杜泽瑞,鲁艳春,张帆.安徽某铁矿酸性矿山废水夏季和秋季微生物群落结构特征.环境科学学报,2016,36(7):2397-2407.
    [35]Hao CB,Wang LH,Gao YA,Zhang LN,Dong HL.Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine,Anhui Province,China.Extremophiles,2010,14(5):465-474.
    [36]Baker-Austin C,Dopson M.Life in acid:pH homeostasis in acidophiles.Trends in Microbiology,2007,15(4):165-171.
    [37]Fuentes JL,Huss VAR,Montero Z,Torronteras R,Cuaresma M,Garbayo I,Vílchez C.Erratum to:phylogenetic characterization and morphological and physiological aspects of a novel acidotolerant and halotolerant microalga coccomyxa onubensis sp.nov.(Chlorophyta,Trebouxiophyceae).Journal of Applied Phycology,2016,28(6):3281-3282.
    [38]Nixdorf B,Mischke U,Le?mann D.Chrysophytes and chlamydomonads:pioneer colonists in extremely acidic mining lakes(pH<3)in Lusatia(Germany).Hydrobiologia,1998,369-370:315-327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700