用户名: 密码: 验证码:
Electrocatalytic water splitting at nitrogen-doped carbon layers-encapsulated nickel cobalt selenide
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrocatalytic water splitting at nitrogen-doped carbon layers-encapsulated nickel cobalt selenide
  • 作者:Chuanlai ; Jiao ; Xiangjie ; Bo ; Ming ; Zhou
  • 英文作者:Chuanlai Jiao;Xiangjie Bo;Ming Zhou;Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education,National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University;
  • 英文关键词:Nickel cobalt selenide;;Nitrogen-doped carbon layer;;Water splitting;;Hydrogen evolution reaction;;Oxygen evolution reaction
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education,National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University;
  • 出版日期:2019-07-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.34
  • 基金:financial support by the National Natural Science Foundation of China (21605015);; the Development Project of Science and Technology of Jilin Province (20170101176JC);; the Fundamental Research Funds for the Central Universities (2412017BJ003);; the Recruitment Program of Global Youth Experts, the Jilin Provincial Department of Education;; the start-up funds from Northeast Normal University;; the service support from Analysis and Testing Center of Northeast Normal University
  • 语种:英文;
  • 页:TRQZ201907016
  • 页数:10
  • CN:07
  • ISSN:10-1287/O6
  • 分类号:169-178
摘要
Generally,the catalytic overpotentials of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)are unavoidable because of the low charge transfer.In this work,two strategies of alloying of Co with Ni and enclosing of electrocatalysts with carbonaceous materials were both used to accelerate the catalytic efficiency of cobalt selenide for water splitting.The nitrogen-doped carbon(NC)layer improves the reaction kinetics by efficient charge transfer.The alloying of metal into composited electrocatalysts can modify the electronic properties of host materials,thereby tuning the adsorption behavior of intermediate and improving the electrocatalytic activity.As expected,Nyquist plots reveal that the charge-transfer resistance(R_(ct))of nickel cobalt selenide encapsulated into nitrogen-doped carbon layer(CoNiSe/NC-3,Co:Ni=1:1)are just 5 and 9 for HER and OER,respectively,which are much lower than those of CoSe/NC-1(Co:Ni=1:0)(81 and 138)and CoNiSe/NC-3 without NC(CoNiSe-3)(54 and 25).With the high charge transfer and porous structure,CoNiSe/NC-3 shows good performance for both HER and OER.When current density reaches 10 m A cm~(-2),only 100 and 270 mV overpotentials are required for HER and OER,respectively.With the potential of 1.65 V,full water splitting also can be catalyzed by Co Ni Se/NC-3 with current density of 20 m A cm~(-2),suggesting that CoNiSe/NC-3 could be used as replacement for noble metal electrocatalysts.
        Generally,the catalytic overpotentials of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)are unavoidable because of the low charge transfer.In this work,two strategies of alloying of Co with Ni and enclosing of electrocatalysts with carbonaceous materials were both used to accelerate the catalytic efficiency of cobalt selenide for water splitting.The nitrogen-doped carbon(NC)layer improves the reaction kinetics by efficient charge transfer.The alloying of metal into composited electrocatalysts can modify the electronic properties of host materials,thereby tuning the adsorption behavior of intermediate and improving the electrocatalytic activity.As expected,Nyquist plots reveal that the charge-transfer resistance(R_(ct))of nickel cobalt selenide encapsulated into nitrogen-doped carbon layer(CoNiSe/NC-3,Co:Ni=1:1)are just 5 and 9 for HER and OER,respectively,which are much lower than those of CoSe/NC-1(Co:Ni=1:0)(81 and 138)and CoNiSe/NC-3 without NC(CoNiSe-3)(54 and 25).With the high charge transfer and porous structure,CoNiSe/NC-3 shows good performance for both HER and OER.When current density reaches 10 m A cm~(-2),only 100 and 270 mV overpotentials are required for HER and OER,respectively.With the potential of 1.65 V,full water splitting also can be catalyzed by Co Ni Se/NC-3 with current density of 20 m A cm~(-2),suggesting that CoNiSe/NC-3 could be used as replacement for noble metal electrocatalysts.
引文
[1]Z.Gao,J.Qi,M.Chen,W.Zhang,R.Cao,Electrochim.Acta 224(2017)412-418.
    [2]C.Tang,M.-M.Titirici,Q.Zhang,J.Energy Chem 26(2017)1077-1093.
    [3]T.Wu,M.Pi,X.Wang,D.Zhang,S.Chen,Phys.Chem.Chem.Phys 19(2017)2104-2110.
    [4]A.Han,P.Du,J.Energy Chem.23(2014)179-184.
    [5]I.Roger,M.A.Shipman,M.D.Symes,Nat.Rev.Chem.1(2017)0003.
    [6]C.Wei,Z.Feng,G.G.Scherer,J.Barber,Y.Shao-Horn,Z.J.Xu,Adv.Mater.29(2017)1606800.
    [7]G.Hao,W.Wang,G.Gao,Q.Zhao,J.Li,J.Energy Chem.24(2015)271-277.
    [8]S.Anantharaj,S.R.Ede,K.Sakthikumar,K.Karthick,S.Mishra,S.Kundu,ACSCatal.6(2016)8069-8097.
    [9]X.Xu,P.Du,Z.Chen,M.Huang,J.Mater.Chem.A 4(2016)10933-10939.
    [10]J.Wang,F.Xu,H.Jin,Y.Chen,Y.Wang,Adv.Mater.29(2017)1605838.
    [11]Z.Fang,L.Peng,H.Lv,Y.Zhu,C.Yan,S.Wang,P.Kalyani,X.Wu,G.Yu,ACSNano 11(2017)9550-9557.
    [12]S.Zhao,R.Jin,H.Abroshan,C.Zeng,H.Zhang,S.D.House,E.Gottlieb,H.J.Kim,J.C.Yang,R.Jin,J.Am.Chem.Soc.139(2017)1077-1080.
    [13]A.T.Swesi,J.Masud,W.P.Liyanage,S.Umapathi,E.Bohannan,J.Medvedeva,M.Nath,Sci.Rep.7(2017)2401.
    [14]T.A.Pham,Y.Ping,G.Galli,Nat.Mater.16(2017)401.
    [15]R.Gao,H.Zhang,D.Yan,Nano Energy 31(2017)90-95.
    [16]J.Xu,W.Zhang,Z.Yang,S.Ding,C.Zeng,L.Chen,Q.Wang,S.Yang,Adv.Funct.Mater 19(2009)1759-1766.
    [17]S.Dutta,A.Indra,Y.Feng,T.Song,U.Paik,ACS Appl.Mater.Interf.9(2017)33766-33774.
    [18]X.Zhang,J.Zhang,J.Zhao,B.Pan,M.Kong,J.Chen,Y.Xie,J.Am.Chem.Soc.134(2012)11908-11911.
    [19]N.Jiang,Q.Tang,M.Sheng,B.You,D.-E.Jiang,Y.Sun,Catal.Sci.Technol.6(2016)1077-1084.
    [20]F.Lu,M.Zhou,Y.Zhou,X.Zeng,Small 13(2017)1701931.
    [21]X.Zou,Y.Zhang,Chem.Soc.Rev.44(2015)5148-5180.
    [22]B.Nohra,H.El Moll,L.M.Rodriguez Albelo,P.Mialane,J.Marrot,C.MellotDraznieks,M.O’Keeffe,R.Ngo Biboum,J.Lemaire,B.Keita,J.Am.Chem.Soc.133(2011)13363-13374.
    [23]L.Jia,X.Sun,Y.Jiang,S.Yu,C.Wang,Adv.Funct.Mater.25(2015)1814-1820.
    [24]G.Huang,H.Liu,S.Wang,X.Yang,B.Liu,H.Chen,M.Xu,J.Mater.Chem.A 3(2015)24128-24138.
    [25]J.He,Y.Chen,W.Lv,K.Wen,Z.Wang,W.Zhang,Y.Li,W.Qin,W.He,ACSNano 10(2016)8837-8842.
    [26]J.He,Y.Chen,W.Lv,K.Wen,P.Li,F.Qi,Z.Wang,W.Zhang,Y.Li,W.Qin,J.Power Sources 327(2016)474-480.
    [27]Y.Yan,X.Ge,Z.Liu,J.-Y.Wang,J.-M.Lee,X.Wang,Nanoscale 5(2013)7768-7771.
    [28]X.Wang,Y.Chen,F.Qi,B.Zheng,J.He,Q.Li,P.Li,W.Zhang,Y.Li,Electrochem.Commun.72(2016)74-78.
    [29]J.He,Y.Chen,W.Lv,K.Wen,P.Li,Z.Wang,W.Zhang,W.Qin,W.He,ACSEnergy Lett.1(2016)16-20.
    [30]F.Wang,T.A.Shifa,X.Zhan,Y.Huang,K.Liu,Z.Cheng,C.Jiang,J.He,Nanoscale7(2015)19764-19788.
    [31]M.-R.Gao,X.Cao,Q.Gao,Y.-F.Xu,Y.-R.Zheng,J.Jiang,S.-H.Yu,ACS Nano 8(2014)3970-3978.
    [32]Y.Liu,Y.Zhu,J.Shen,J.Huang,X.Yang,C.Li,Nanoscale(2018)2603-2612.
    [33]S.Yang,L.Peng,E.Oveisi,S.Bulut,D.T.Sun,M.Asgari,O.Trukhina,W.L.Queen,Chem.Eur.J.24(2018)4234-4238.
    [34]B.Liu,H.Li,B.Cao,J.Jiang,R.Gao,J.Zhang,Adv.Funct.Mater.28(2018)1801527.
    [35]M.Kruk,M.Jaroniec,A.Sayari,Langmuir 13(1997)6267-6273.
    [36]T.Chen,Y.Tan,Nano Research 11(2018)1331-1344.
    [37]O.Sekizawa,T.Uruga,K.Higashi,T.Kaneko,Y.Yoshida,T.Sakata,Y.Iwasawa,ACS Sustain.Chem.Eng.5(2017)3631-3636.
    [38]M.M.Rahman,A.M.Glushenkov,T.Ramireddy,Y.Chen,Chem.Commun.50(2014)5057-5060.
    [39]F.Gong,X.Xu,Z.Li,G.Zhou,Z.S.Wang,Chem.Commun.49(2013)1437-1439.
    [40]H.Chen,S.Chen,M.Fan,C.Li,D.Chen,G.Tian,K.Shu,J.Mater.Chem.A 3(2015)23653-23659.
    [41]M.-R.Gao,Z.-Y.Lin,T.-T.Zhuang,J.Jiang,Y.-F.Xu,Y.-R.Zheng,S.-H.Yu,J.Mater.Chem.22(2012)13662.
    [42]Y.Du,G.Cheng,W.Luo,Catal.Sci.Technol.7(2017)4604-4608.
    [43]Y.Hattori,T.Konishi,K.Kaneko,Chem.Phys.Lett.355(2002)37-42.
    [44]B.Wang,X.Wang,B.Zheng,B.Yu,F.Qi,W.Zhang,Y.Li,Y.Chen,Electrochem.Commun.83(2017)51-55.
    [45]A.Sivanantham,P.Ganesan,S.Shanmugam,Adv.Funct.Mater.26(2016)4661-4672.
    [46]M.M.Najafpour,S.M.Hosseini,M.Tavahodi,M.Z.Ghobadi,Int.J.Hydrogen Energy 41(2016)13469-13475.
    [47]S.Xiong,J.S.Chen,X.W.Lou,H.C.Zeng,Adv.Funct.Mater.22(2012)861-871.
    [48]D.Kong,H.Wang,Z.Lu,Y.Cui,J.Am.Chem.Soc.136(2014)4897-4900.
    [49]H.Zhao,Y.Li,D.Wang,L.Zhao,Eur.J.Inorg.Chem.2018(2018)1145-1151.
    [50]Y.Xu,Y.Mo,J.Tian,P.Wang,H.Yu,J.Yu,Appl.Catal.B 181(2016)810-817.
    [51]I.A.Raj,K.I.Vasu,J.Appl.Electrochem.22(1992)471-477.
    [52]V.M.Nikolic,S.L.Maslovara,G.S.Tasic,T.P.Brdaric,P.Z.Lausevic,B.B.Radak,M.P.Marceta Kaninski,Appl.Catal.B 179(2015)88-94.
    [53]Y.Z.Fan,Y.Zhang,N.Li,S.G.Liu,T.Liu,N.B.Li,H.Q.Luo,Sens.Actuators B 240(2017)949-955.
    [54]M.Zhou,Q.Weng,X.Zhang,X.Wang,Y.Xue,X.Zeng,Y.Bando,D.Golberg,J.Mater.Chem.A 5(2017)4335-4342.
    [55]C.Dong,T.Kou,H.Gao,Z.Peng,Z.Zhang,Adv.Energy Mater.8(2018)1701347.
    [56]J.Deng,P.Ren,D.Deng,X.Bao,Angew.Chem.Int.Ed.54(2015)2100-2104.
    [57]L.Liang,H.Cheng,F.Lei,J.Han,S.Gao,C.Wang,Y.Sun,S.Qamar,S.Wei,Y.Xie,Angew.Chem.Int.Ed.54(2015)12004-12008.
    [58]M.Zhou,Q.Weng,Z.I.Popov,Y.Yang,L.Y.Antipina,P.B.Sorokin,X.Wang,Y.Bando,D.Golberg,ACS Nano 12(2018)4148-4155.
    [59]C.C.Mc Crory,S.Jung,I.M.Ferrer,S.M.Chatman,J.C.Peters,T.F.Jaramillo,J.Am.Chem.Soc.137(2015)4347-4357.
    [60]H.N.Nong,L.Gan,E.Willinger,D.Teschner,P.Strasser,Chem.Sci.5(2014)2955-2963.
    [61]C.Guan,W.Xiao,H.Wu,X.Liu,W.Zang,H.Zhang,J.Ding,Y.P.Feng,S.J.Pennycook,J.Wang,Nano Energy 48(2018)73-80.
    [62]Y.Liu,Q.Wang,L.Wu,Y.Long,J.Li,S.Song,H.Zhang,Cryst.Growth Des.18(2018)3404-3410.
    [63]X.Xiao,C.-T.He,S.Zhao,J.Li,W.Lin,Z.Yuan,Q.Zhang,S.Wang,L.Dai,D.Yu,Energy Environ.Sci.10(2017)893-899.
    [64]S.Jin,ACS Energy Lett.2(2017)1937-1938.
    [65]H.Ma,W.Ma,J.-F.Chen,X.-Y.Liu,Y.-Y.Peng,Z.-Y.Yang,H.Tian,Y.-T.Long,J.Am.Chem.Soc.14(2018)5272-5279.
    [66]C.He,J.Tao,Chem.Commun.51(2015)8323-8325.
    [67]W.Chen,J.Pei,C.T.He,J.Wan,H.Ren,Y.Zhu,Y.Wang,J.Dong,S.Tian,W.C.Cheong,S.Lu,L.Zheng,X.Zheng,W.Yan,Z.Zhuang,C.Chen,Q.Peng,D.Wang,Y.Li,Angew.Chem.Int.Ed.56(2017)16086-16090.
    [68]L.Fang,W.Li,Y.Guan,Y.Feng,H.Zhang,S.Wang,Y.Wang,Adv.Funct.Mater.27(2017)1701008.
    [69]T.Meng,J.Qin,S.Wang,D.Zhao,B.Mao,M.Cao,J.Mater.Chem.A 5(2017)7001-7014.
    [70]K.Li,J.Zhang,R.Wu,Y.Yu,B.Zhang,Adv.Sci.3(2016)1500426.
    [71]C.Sun,Q.Dong,J.Yang,Z.Dai,J.Lin,P.Chen,W.Huang,X.Dong,Nano Research 9(2016)2234-2243.
    [72]J.Li,M.Wan,T.Li,H.Zhu,Z.Zhao,Z.Wang,W.Wu,M.Du,Electrochim.Acta272(2018)161-168.
    [73]J.Li,M.Yan,X.Zhou,Z.-Q.Huang,Z.Xia,C.-R.Chang,Y.Ma,Y.Qu,Adv.Funct.Mater.26(2016)6785-6796.
    [74]F.Ming,H.Liang,H.Shi,X.Xu,G.Mei,Z.Wang,J.Mater.Chem.A 4(2016)15148-15155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700