Optical investigation of topological semimetal SrMnSb_2
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optical investigation of topological semimetal SrMnSb_2
  • 作者:邱子阳 ; 廖知裕 ; 邱祥冈
  • 英文作者:Zi-Yang Qiu;Zhi-Yu Liao;Xiang-Gang Qiu;Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences;School of Physical Sciences, University of Chinese Academy of Sciences;Collaborative Innovation Center of Quantum Matter;
  • 英文关键词:infrared spectroscopy;;topological material;;Drude mode
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences;School of Physical Sciences University of Chinese Academy of Sciences;Collaborative Innovation Center of Quantum Matter;
  • 出版日期:2019-04-15
  • 出版单位:Chinese Physics B
  • 年:2019
  • 期:v.28
  • 基金:Project supported by the National Natural Science Foundation of China(Grant No.11774400);; the National Key Basic Research Program of China(Grant Nos.2015CB921102 and 2017YFA0302903)
  • 语种:英文;
  • 页:ZGWL201904008
  • 页数:4
  • CN:04
  • ISSN:11-5639/O4
  • 分类号:51-54
摘要
We investigate the temperature-dependent infrared spectroscopy of SrMnSb_2, which is a semimetal with multiple Fermi surfaces. A notable blue shift of the plasma minimum in reflectivity upon cooling indicates that the carrier density varies with temperature. In the real part of the optical conductivity σ_1(ω), a linearly-increased component which extrapolates to zero conductivity at finite frequency has been identified, which suggests dispersion of gapped Dirac band structures near the Fermi level. A two-Drude model, representing two different types of carriers, is introduced to describe the real part of optical conductivity. We separate the contributions of two-Drude model in dc conductivity, and demonstrate that the transport properties of SrMnSb_2 are mainly affected by the narrow-Drude quasiparticles. Compared with the similar phenomena observed in CaMnSb_2 and SrMnBi_2, we can infer that the two-Drude model is an appropriate approach to investigate the multiband materials in AMnSb_2 and AMnBi_2 families.
        We investigate the temperature-dependent infrared spectroscopy of SrMnSb_2, which is a semimetal with multiple Fermi surfaces. A notable blue shift of the plasma minimum in reflectivity upon cooling indicates that the carrier density varies with temperature. In the real part of the optical conductivity σ_1(ω), a linearly-increased component which extrapolates to zero conductivity at finite frequency has been identified, which suggests dispersion of gapped Dirac band structures near the Fermi level. A two-Drude model, representing two different types of carriers, is introduced to describe the real part of optical conductivity. We separate the contributions of two-Drude model in dc conductivity, and demonstrate that the transport properties of SrMnSb_2 are mainly affected by the narrow-Drude quasiparticles. Compared with the similar phenomena observed in CaMnSb_2 and SrMnBi_2, we can infer that the two-Drude model is an appropriate approach to investigate the multiband materials in AMnSb_2 and AMnBi_2 families.
引文
[1]Armitage N P,Mele E J and Vishwanath A 2018 Rev.Mod.Phys.90015001
    [2]Bansil A,Lin H and Das T 2016 Rev.Mod.Phys.88 021004
    [3]Coulter J,Sundararaman R and Narang P 2018 Phys.Rev.B 98 115130
    [4]Xu N,Wang ZW,Magrez A,Bugnon P,Berger H,Matt C E,Strocov VN,Plumb N C,Radovic M and Pomjakushina E 2018 Phys.Rev.Lett.121 136401
    [5]Guo Y F,Princep A J,Zhang X,Manuel P,Khalyavin D,Mazin I I,Shi Y G,Boothroyd and A T 2014 Phys.Rev.B 90 075120
    [6]Wan X,Turner A M,Vishwanath A and Savrasov S Y 2011 Phys.Rev.B 83 205101
    [7]Lee G,Farhan M A,Kim J S and Shim J H 2013 Phys.Rev.B 87 245104
    [8]Park J,Lee G,Wolff-Fabris F,Koh Y Y,Eom M J,Kim Y K,Farhan MA,Jo Y J,Kim C and Shim J H 2011 Phys.Rev.Lett.107 126402
    [9]Wang K,Graf D,Wang L,Lei H,Tozer S W and Petrovic C 2012 Phys.Rev.B 85 041101
    [10]Li L,Wang K,Graf D,Wang L,Wang A and Petrovic C 2016 Phys.Rev.B 93 115141
    [11]Wang A,Zaliznyak I,Ren W,Wu L,Graf D,Garlea V O,Warren J B,Bozin E,Zhu Y and Petrovic C 2016 Phys.Rev.B 94 165161
    [12]Wang K,Graf D,Lei H,Tozer S W and Petrovic C 2011 Phys.Rev.B84 220401
    [13]May A F,McGuire M A,Sales and B C 2014 Phys.Rev.B 90 075109
    [14]Chinotti M,Pal A,Ren W J,Petrovic C and Degiorgi L 2016 Phys.Rev.B 94 245101
    [15]Liu J,Hu J,Cao H,et al.2016 Sci.Rep.6 30525
    [16]Chaudhuri D,Cheng B,Yaresko A,Gibson Q D,Cava R J and Armitage N P 2017 Phys.Rev.B 96 075151
    [17]Qiu Z Y,Le C C,Dai Y M,Xu B,He J B,Yang R,Chen G F,Hu J Pand Qiu X G 2018 Phys.Rev.B 98 115151
    [18]Wang Y Y,Xu S,Sun L L and Xia T L 2018 Phys.Rev.Materials 2021201
    [19]Farhan M A,Lee G and Shim J H 2014 J.Phys.:Condens.Matter 26042201
    [20]Park H J,Park B C,Lee M C,Jeong D W,Park J,Kim J S,Ji H S,Shim J H,Kim K W,Moon S J 2017 Phys.Rev.B 96 155139
    [21]Park H J,Sandilands L J,You J S,Ji H S,Sohn C H,Han J W,Moon SJ,Kim K W,Shim J H and Kim J S 2016 Phys.Rev.B 93 205122
    [22]Carbotte J P 2017 J.Phys.:Condens.Matter 29 045301
    [23]Hosur P,Parameswaran S A and Vishwanath A 2012 Phys.Rev.Lett.108 046602
    [24]Ashby P E C and Carbotte J P 2014 Phys.Rev.B 89 245121
    [25]He J B,Fu Y,Zhao L X,Liang H,Chen D,Leng Y M,Wang X M,Li J,Zhang S and Xue M Q 2017 Phys.Rev.B 95 045128
    [26]Homes C C,Reedyk M,Cradles D A and Timusk T 1993 Appl.Opt.322976
    [27]Schilling M B,L¨ohle A,Neubauer D,Shekhar C,Felser C,Dressel Mand Pronin A V 2017 Phys.Rev.B 95 155201
    [28]Beach R T and Christy R W 1997 Phys.Rev.B 16 5277
    [29]Dai Y M,Akrap A,Schneeloch J,Zhong R D,Liu T S,Gu G D,Li Qand Homes C C 2014 Phys.Rev.B 90 121114
    [30]Ling J W,Liu Y W,Jin Z,Huang S,Wang W Y,Zhang C,Yuan X,Liu S S,Zhang E Z,Huang C,Sankar R,Chou F C,Xia Z C and Xiu F X2018 Chin.Phys.B 27 017504

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700