π-π作用下的VOPc/g-C_3N_4用于有效提升可见光光催化制氢性能(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Highly enhanced visible-light photocatalytic hydrogen evolution on g-C_3N_4 decorated with vopc through π-π interaction
  • 作者:刘亚男 ; 马柳波 ; 申丛丛 ; 王昕 ; 周霄 ; 赵志伟 ; 徐安武
  • 英文作者:Yanan Liu;Liubo Ma;Congcong Shen;Xin Wang;Xiao Zhou;Zhiwei Zhao;Anwu Xu;Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry Physics, University of Science and Technology of China;College of Biological Chemical Science and Engineering, Jiaxing University;
  • 关键词:VOPc/g-C_3N_4 ; π-π作用 ; 可见光催化 ; 制氢 ; 电荷分离效率
  • 英文关键词:VOPc/g-C_3N_4;;p-p Interaction;;Visible light photocatalysis;;Hydrogen evolution;;Charge separation efficiency
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:中国科学技术大学化学物理系合肥微尺度物质科学国家实验室;嘉兴学院生物与化学工程学院;
  • 出版日期:2019-01-17
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(51572253,21771171);; Scientific Research Grant of Hefei National Synchrotron Radiation Laboratory(UN2017LHJJ);; the Fundamental Research Funds for the Central Universities;; cooperation between NSFC and Netherlands Organization for Scientific Research(51561135011)~~
  • 语种:英文;
  • 页:CHUA201902005
  • 页数:9
  • CN:02
  • ISSN:21-1601/O6
  • 分类号:37-45
摘要
近年来,随着全球科学技术的进步和工业的不断发展,人们的经济生活水平有了极大的提高,但同时也造成能源短缺和环境污染问题,成为21世纪制约经济和社会进一步发展的严重瓶颈,因此开发和研究环保和可再生的绿色能源技术是一项紧迫任务.自首次报道用二氧化钛为电极、采用光电化学分解水制氢之后,光催化分解水制氢引起了人们极大的兴趣,并被认为是缓解全球能源问题的最有希望的解决方案之一.其中,实现有效的太阳能制氢生产中最关键因素是设计稳定、高效和经济的光催化剂,并且能够利用可见光区进行工作(入射到地球上46%的太阳光谱是可见光).聚合物石墨相氮化物(g-C_3N_4)作为一种对可见光响应的新型无机非金属半导体光催化剂,被认为是一种"可持续"有机半导体材料,目前已并被广泛应用于各种光催化反应中.但是由于其光生电子-空穴在动力学上具有相对较大的复合速率,单纯g-C_3N_4的光催化活性远远达不到人们的要求.因此,应该尽可能的提高电荷转移动力学来抑制g-C_3N_4中光生电荷的复合,从而提高光生电荷从g-C_3N_4转移至反应位点的迁移速率.在前期研究的基础上,本文利用钒氧酞菁(VOPc)分子通过p-p相互作用以修饰g-C_3N_4的表面和电子结构,从而提高其光生电子-空穴的分离效率,最终极大提升其可见光光催化制氢性能.本文采用紫外可见光谱(UV-vis),高分辨透射电镜(HRTEM),傅里叶变换红外光谱(FT-IR), X-射线能谱(XPS),稳态光致发光光谱(PL),时间分辨光致发光光谱(TRPL),光电流和阻抗等一系列表征手段研究了VOPc/g-C_3N_4(VOPc/CN)复合催化剂的结构和性质.FT-IR, XPS及mapping等结果表明, VOPc分子已经成功引入到g-C_3N_4表面且未对其晶相、电子结构及其纳米片结构产生显著影响;UV-vis结果显示, VOPc分子成功引入并通过非共价键的p-p作用连接.总之,引入VOPc分子即拓展了催化剂对可见光的响应区域,又有利于光生载流子的传递和光生电子-空穴对的有效分离.当引入4wt%的VOPc分子时, VOPc/CN复合光催化剂的产氢速率增加至65.52μmolh-1, 420 nm处的量子效率高达6.29%,是单纯g-C_3N_4的6倍.此外,该催化剂在可见光下连续照射反应20 h后,其光催化活性几乎没有降低,表现出良好的光化学稳定性.由于两者LUMO和HOMO轨道之间的良好匹配,在光催化过程中光生电子-空穴在VOPc和g-C_3N_4之间实现了空间分离,有效阻止了光生电子-空穴对的复合,因而g-C_3N_4光催化制氢性能显著提升.同时对比了利用NiS和Ni Px做助剂的g-C_3N_4的可见光光催化制氢性能.结果显示, VOPc/CN复合光催化剂具有较好的光催化性能.总之,本文通过一种简单、经济、有效的方法将两种新兴的功能材料有机地复合在一起,用于可见光照射下高效光催化制氢,为以后合理地开发用于太阳能转换的更为高效经济的材料提供了一个新的思路.
        Photocatalytic H_2 evolution reactions on pristine graphitic carbon nitrides(g-C_3N_4), as a promising approach for converting solar energy to fuel, are attractive for tackling global energy concerns but still suffer from low efficiencies. In this article, we report a tractable approach to modifying g-C_3N_4 with vanadyl phthalocyanine(VOPc/CN) for efficient visible-light-driven hydrogen production. A non-covalent VOPc/CN hybrid photocatalyst formed via π-π stacking interactions between the two components, as confirmed by analysis of UV-vis absorption spectra. The VOPc/CN hybrid photocatalyst shows excellent visible-light-driven photocatalytic performance and good stability. Under optimal conditions, the corresponding H_2 evolution rate is nearly 6 times higher than that of pure g-C_3N_4. The role of VOPc in promoting hydrogen evolution activity was to extend the visible light absorption range and prevent the recombination of photoexcited electron-hole pairs effectively. It is expected that this facile modification method could be a new inspiration for the rational design and exploration of g-C_3N_4-based hybrid systems with strong light absorption and high-efficiency carrier separation.
引文
[1]J.X.Low,J.G.Yu,M.Jaroniec,S.Wageh,A.A.Al-Ghamdi,Adv.Mater.,2017,29,1601694.
    [2]J.W.Fu,J.G.Yu,C.J.Jiang,B.Cheng,Adv.Energy Mater.,2018,8,1701503.
    [3]A.Fujishima,K.Honda,Nature,1972,238,37-38.
    [4]R.M.Navarro,M.C.Alvarez-Galván,J.A.Villoria de la Mano,S.M.Al-Zahrani,J.L.G.Fierro,Energy Environ.Sci.,2010,3,1865-1882.
    [5]S.Z.Hu,F.Y.Li,Z.P.Fan,J.Z.Gui,J.Power Sources,2014,250,30-39.
    [6]H.L.Guo,H.Du,Y.F.Jiang,N.Jiang,C.C.Shen,X.Zhou,Y.N.Liu,A.W.Xu,J.Phys.Chem.C,2017,121,107-114.
    [7]L.Jia,D.H.Wang,Y.X.Huang,A.W.Xu,H.Q.Yu,J.Phys.Chem.C,2011,115,11466-11473.
    [8]F.Andrew Frame,E.C.Carroll,D.S.Larsen,M.Sarahan,N.D.Browning,F.E.Osterloh,Chem.Commun.,2008,2206-2208.
    [9]X.C.Wang,K.Maeda,A.Thomas,K.Takanabe,G.Xin,J.M.Carlsson,K.Domen,M.Antonietti,Nat.Mater.,2009,8,76-80.
    [10]J.Q.Wen,J.Xie,X.B.Chen,X.Li,Appl.Surf.Sci.,2017,391,72-123.
    [11]Y.G.Wang,X.Bai,H.F.Qin,F.Wang,Y.G.Li,X.Li,S.F.Kang,Y.H.Zuo,L.F.Cui,ACS Appl.Mater.Interfaces,2016,8,17212-17219.
    [12]W.T.Wu,J.Q.Zhang,W.Y.Fan,Z.T.Li,L.Z.Wang,X.M.Li,Y.Wang,R.Q.Wang,J.T.Zheng,M.B.Wu,H.B.Zeng,ACS Catal.,2016,6,3365-3371.
    [13]J.Y.Qin,H.P.Zeng,Appl.Catal.B,2017,209,161-173.
    [14]Q.L.Xu,C.J.Jiang,B.Cheng,J.G.Yu,Dalton Trans.,2017,46,10611-10619.
    [15]F.Chen,H.Yang,X.F.Wang,H.G.Yu,Chin.J.Catal.,2017,38,296-304.
    [16]J.Liu,N.Y.Liu,H.Li,L.P.Wang,X.Q.Wu,H.Huang,Y.Liu,F.Bao,Y.Lifshitz,S.-T.Lee,Z.H.Kang,Nanoscale,2016,8,11956-11961.
    [17]J.H.Liu,S.Y.Xie,Z.B.Geng,K.K.Huang,L.Fan,W.L.Zhou,L.X.Qiu,D.L.Gao,L.Ji,L.M.Duan,L.H.Lu,W.F.Li,S.Z.Bai,Z.R.Liu,W.Chen,S.H.Feng,Y.G.Zhang,Nano Lett.,2016,16,6568-6575.
    [18]N.Li,J.Zhou,Z.Q.Sheng,W.Xiao,Appl.Surf.Sci.,2018,430,218-224.
    [19]W.L.Yu,J.X.Chen,T.T.Shang,L.F.Chen,L.Gu,T.Y.Peng,Appl.Catal.B,2017,219,693-704.
    [20]K.L.He,J.Xie,M.L.Li,X.Li,Appl.Surf.Sci.,2018,430,208-217.
    [21]J.Q.Wen,J.Xie,R.C.Shen,X.Li,X.Y.Luo,H.D.Zhang,A.P.Zhang,G.C.Bi,Dalton Trans.,2017,46,1794-1802.
    [22]R.C.Shen,J.Xie,H.D.Zhang,A.P.Zhang,X.B.Chen,X.Li,ACS Sustainable Chem.Eng.,2017,6,816-826.
    [23]K.L.He,J.Xie,X.Y.Luo,J.Q.Wen,S.Ma,X.Li,Y.P.Fang,X.C.Zhang,Chin.J.Catal.,2017,38,240-252.
    [24]Y.P.Zhu,T.Z.Ren,Z.Y.Yuan,ACS Appl.Mater.Interfaces,2015,7,16850-16856.
    [25]Y.Oh,J.O.Hwang,E.S.Lee,M.Yoon,V.D.Le,Y.H.Kim,D.H.Kim,S.O.Kim,ACS Appl.Mater.Interfaces,2016,8,25438-25443.
    [26]J.Jiang,S.W.Cao,C.L.Hu,C.H.Chen,Chin.J.Catal.,2017,38,1981-1989.
    [27]R.Kuriki,M.Yamamoto,K.Higuchi,Y.Yamamoto,M.Akatsuka,D.L.Lu,S.Yagi,T.Yoshida,O.Ishitani,K.Maeda,Angew.Chem.Int.Ed.,2017,56,4867-4871.
    [28]X.Q.Fan,L.X.Zhang,R.L.Cheng,M.Wang,M.L.Li,Y.J.Zhou,J.L.Shi,ACS Catal.,2015,5,5008-5015.
    [29]F.Chen,H.Yang,W.Luo,P.Wang,H.G.Yu,Chin.J.Catal.,2017,38,1990-1998.
    [30]L.Zhang,Q.Q.Liu,Y.Y.Chai,J.Ren,W.L.Dai,Appl.Surf.Sci.,2018,430,316-324.
    [31]X.H.Zhang,L.J.Yu,C.S.Zhuang,T.Y.Peng,R.J.Li,X.G.Li,ACSCatal.,2014,4,162-170.
    [32]Z.Xing,Z.G.Chen,X.Zong,L.Z.Wang,Chem.Commun.,2014,50,6762-6764.
    [33]Y.N.Liu,C.C.Shen,N.Jiang,Z.W.Zhao,X.Zhou,S.J.Zhao,A.W.Xu,ACS Catal.,2017,7,8228-8234.
    [34]Y.N.Liu,X.Zhou,C.C.Shen,Z.W.Zhao,Y.F.Jiang,L.B.Ma,X.X.Fang,A.Zeb,T.Y.Cheang,A.W.Xu,Catal.Sci.Technol.,2018,8,2853-2859.
    [35]Y.R.Peng,H.Zhang,H.L.Wu,B.Q.Huang,L.Gan,Z.Chen,Dyes Pigm.,2010,87,10-16.
    [36]M.A.Garcia-Sanchez,A.Campero,Polyhedron,2000,19,2383-2386.
    [37]W.Y.Lu,T.F.Xu,Y.Wang,H.G.Hu,N.Li,X.M.Jiang,W.X.Chen,Appl.Catal.B,2016,180,20-28.
    [38]K.Takanabe,K.Kamata,X.C.Wang,M.Antonietti,J.Kubota,K.Domen,Phys.Chem.Chem.Phys.,2010,12,13020-13025.
    [39]X.H.Zhang,L.J.Yu,R.J.Li,T.Y.Peng,X.G.Li,Catal.Sci.Technol.,2014,4,3251-3260.
    [40]W.G.Xie,X.M.Wang,J.B.Xu,J.Phys.Chem.C,2012,116,17580-17585.
    [41]D.M.Chen,K.W.Wang,W.Z.Hong,R.L.Zong,W.Q.Yao,Y.F.Zhu,Appl.Catal.B,2015,166-167,366-373.
    [42]Y.X.Xu,L.Zhao,H.Bai,W.J.Hong,C.Li,G.Q.Shi,J.Am.Chem.Soc.,2009,131,13490-13479.
    [43]P.Zhang,T.Wang,X.X.Chang,J.L.Gong,Acc.Chem.Res.,2016,49,911-921.
    [44]S.F.Chen,L.Ji,W.M.Tang,X.L.Fu,Dalton Trans.,2013,42,10759-10768.
    [45]T.Hisatomi,K.Takanabe,K.Domen,Catal.Lett.,2015,145,95-108.
    [46]R.Q.Ye,H.B.Fang,Y.Z.Zheng,N.Li,Y.Wang,X.Tao,ACS Appl.Mater.Interfaces,2016,8,13879-13889.
    [47]W.J.Ong,L.L.Tan,Y.H.Ng,S.T.Yong,S.P.Chai,Chem.Rev.,2016,116,7159-7329.
    [48]L.Ge,C.C.Han,J.Liu,J.Mater.Chem.,2012,22,11843-11850.
    [49]X.L.Yin,L.L.Li,W.J.Jiang,Y.Zhang,X.Zhang,L.J.Wan,J.S.Hu,ACS Appl.Mater.Interfaces,2016,8,15258-15266.
    [50]Y.Sui,J.H.Liu,Y.W.Zhang,X.K.Tian,W.Chen,Nanoscale,2013,5,9150-9155.
    [51]S.X.Ouyang,J.H.Ye,J.Am.Chem.Soc.,2011,133,7757-7763.
    [52]Y.Y.Kang,Y.Q.Yang,L.C.Yin,X.D.Kang,G.Liu,H.M.Cheng,Adv.Mater.,2015,27,4572-4577.
    [53]P.Ye,X.L.Liu,J.Iocozzia,Y.P.Yuan,L.N.Gu,G.S.Xu,Z.Q.Lin,J.Mater.Chem.A,2017,5,8493-8498.
    [54]D.E.Barlow,K.W.Hipps,J.Phys.Chem.B,2000,104,5993-6000.
    [55]S.W.Cao,J.X.Low,J.G.Yu,M.Jaroniec,Adv.Mater.,2015,27,2150-2176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700