F17大肠杆菌在湖羊羔羊个体脾脏中LncRNA表达谱变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Changes of LncRNA Expression Profile in Spleen of Diarrhea and Non-diarrhea Individuals in F17 of Hu Sheep Lamb
  • 作者:黄赛男 ; 金澄艳 ; 鲍建军 ; 王悦 ; 陈炜昊 ; 吴天弋 ; 王利宏 ; 吕晓阳 ; 高雯 ; 王步忠 ; 朱国强 ; 戴国俊 ; 孙伟
  • 英文作者:HUANG SaiNan;JIN ChengYan;BAO JianJun;WANG Yue;CHEN WeiHao;WU TianYi;WANG LiHong;Lü XiaoYang;GAO Wen;WANG BuZhong;ZHU GuoQiang;DAI GuoJun;SUN Wei;College of Animal Science and Technology, Yangzhou University;Nanjing New Kyushu Agriculture and Animal Husbandry Technology Co., Ltd.;Jiangsu Source Ecological Agriculture Co., Ltd.;College of Veterinary Medicine, Yangzhou University;Joint Laboratory of International Cooperation in Agriculture and Agricultural Products Safety of the Ministry of Education, Yangzhou University;
  • 关键词:大肠杆菌F17 ; lncRNA ; 湖羊羔羊
  • 英文关键词:E.coli F17;;lncRNA;;Lake lamb
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:扬州大学动物科学与技术学院;南京新九州农牧科技有限公司;江苏西来原生态农业有限公司;扬州大学兽医学院;扬州大学教育部农业与农产品安全国际合作联合实验室;
  • 出版日期:2019-04-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:国家自然科学基金(31872333);; 科技部家养动物平台项目;; 江苏省重点研发计划(现代农业)项目(BE2018354);; 江苏省农业重大新品种创制项目(PZCZ201739);; 江苏省农业科技自主创新项目(CX(18)2003);; 江苏高校优势学科建设工程资助项目;; 江苏省高校自然科学研究重大项目(17KJA230001);; 江苏省六大高峰人才项目和扬州大学研究生创新工程项目(XKYCX17_060、SJCX18_0804)
  • 语种:中文;
  • 页:ZNYK201907015
  • 页数:13
  • CN:07
  • ISSN:11-1328/S
  • 分类号:169-181
摘要
【目的】通过筛选对大肠杆菌(E.coli)F17菌毛非腹泻型与腹泻型的绵羊脾脏中差异表达的lncRNA,来探究lncRNA对绵羊抗腹泻的作用。【方法】本研究通过对湖羊羔羊口服E.coli F17菌株获得非腹泻和腹泻型个体,利用羔羊肠道细菌计数、病理组织切片验证攻毒成功性;构建非腹泻组和腹泻组羔羊脾脏的cDNA文库,使用Illumina HiSeq 2500平台进行配对测序;通过Gene Ontology(GO)和KEGG Pathway富集分析对差异表达转录本功能描述和细胞通路分析,利用FPKM法估计lncRNA和mRNA转录物的表达水平,并用高通量测序技术RNA-seq筛选出非腹泻和腹泻个体脾脏中的差异表达lncRNA;然后利用荧光定量PCR技术检测了非腹泻组和腹泻组羔羊脾脏组织中DE lncRNA和DE mRNA的表达水平,来验证筛选的DE lncRNA在非腹泻组过程中发挥作用。【结果】羔羊口服E.coli F17菌株后,出现非腹泻和腹泻两种表型,腹泻组羔羊肠道中的细菌数量显著高于非腹泻组(P<0.05),同时腹泻组羔羊空肠黏膜组织出现不同程度的损伤,色泽暗沉,小肠绒毛部分脱落。笔者利用RNA-seq在非腹泻和腹泻羔羊脾脏中筛选出34个差异表达的(DE)lncRNA,703个的DE mRNA,随机选择一共12个DE lncRNA和DE mRNA,用q-PCR验证它们在非腹泻型和腹泻型羔羊体内的相对表达水平,发现与RNA-seq结果一致。通过Gene Ontology(GO)和KEGG Pathway富集分析,将DE lncRNA与GO数据库进行比对的结果表明一共有34条lncRNA被注释和分类到302个功能亚类中,绵羊蛋白质结合(GO:0005515),细胞核(GO:0005634),poly(A)RNA结合(GO:0044822),细胞质(GO:0005737),组织重塑(GO:0048771),内肽酶活性的调节(GO:0052548)),6-磷酸果糖-2-激酶/果糖-2,6-双磷酸酶复合物(GO:0043540),磷脂酰肌醇磷酸化(GO:0046854),果糖-2,6-二磷酸2-磷酸酶活性(GO:0004331),钙依赖性磷脂酶C活性(GO:0050429)等10个功能亚类的lncRNA较多,而其余的功能亚类的lncRNA分布较少。将DE lncRNA与KEGG通路数据库进行比对的结果表明,一共有34条lncRNA被注释和归类到149个KEGG通路中,绵羊甲状腺激素信号通路(路径:ko04919),Spliceosome(路径:ko03040),白细胞跨内皮迁移(路径:ko04670),神经营养因子信号通路(路径:ko04722),溶酶体(路径:ko04142),MAPK信号通路-途径(路径:ko04011),鞘脂信号通路(路径:ko04071),吞噬体(路径:ko04145),氧化磷酸化(路径:ko00190)等9个KEGG通路的lncRNA较多,而其余的KEGG通路的lncRNA分布较少。通过lncRNA-mRNA相互作用网络分析,发现6个共表达基因:MYO1G、TIMM29、CARM1、ADGRB1、SEPT4、DESI2。【结论】探究了对于腹泻产生非腹泻和腹泻型羔羊脾脏中lncRNA的表达谱,发现了非腹泻和腹泻羔羊脾脏中差异表达的lncRNA,有助于找出羔羊如何抵抗腹泻的发生机制,为羔羊抵抗腹泻提供科学的依据。
        【Objective】The objective of this study was to investigate the effect of lncRNA on anti-diarrhea in sheep by screening lncRNA differentially expressed in E. coli F17 fimbriae non-diarrhea and diarrhea sheep spleen. 【Method】 In this study, individuals with non-diarrhea and diarrhea were obtained by oral administration of E. coli F17 strain to Lake Lamb. The success of the challenge was verified by using intestinal counts and pathological sections of the lambs. A cDNA library of spleen from lambs in non-diarrhea group and diarrhea group was constructed and sequenced by using Illumina HiSeq 2500 platform.Functional description and cell pathway analysis of differentially expressed transcripts were performed by Gene Ontology(GO)and KEGG Pathway enrichment analysis by using FPKM method. The expression levels of lncRNA and mRNA transcripts were screened by high-throughput sequencing technology RNA-seq for differential expression of lncRNA in spleens of non-diarrhea and diarrhea individuals; then, Quantitative PCR was used to detect spleen tissues in non-diarrhea and diarrhea lambs. The expression levels of differentially expressed(DE) lncRNA and DE mRNA were used to verify the role of screened DE lncRNA in the non-diarrhea group. 【Result】 After oral administration of E. coli F17 strain, there were two phenotypes of non-diarrhea and diarrhea. The number of bacteria in the intestine of the diarrhea group was significantly higher than that in the non-diarrhea group(P<0.05), and the jejunal mucosa of the diarrhea group appeared different degrees of damage, dull color, part of the small intestine villi off. We used RNA-seq to screen 34 DE lncRNAs and 703 DE mRNAs in non-diarrhea and diarrhea lamb spleens. A total of 12 DE lncRNA and DE mRNA were randomly selected and verified by q-PCR. Relative expression levels in the diarrhea and non-diarrhea lambs were found to be consistent with RNA-seq results. The comparison between DE lncRNA and GO database by GO and KEGG pathway enrichment analysis indicated that a total of 34 lncRNAs were annotated and classified into302 functional subclasses. There were more than one functional subclass of lncRNA, such as sheep protein binding(GO:0005515), nuclear(GO: 0005634), poly(A) RNA binding(GO: 0044822), cytoplasm(GO: 0005737), tissue remodeling(GO:0048771), regulation of endopeptidase activity(GO: 0052548)), 6-phosphate fructose-2-kinase/fructose-2,6-bisphosphatase complex(GO: 0043540), phosphatidylinositol phosphorylation(GO: 0848654), fructose-2, 6.2-phosphite 2-phosphatase activity(GO: 0004331) and calcium-dependent phospholipase C activity(GO: 0050429), while the remaining functional subclasses had less lncRNA distribution. The alignment of DE lncRNA with the KEGG pathway database indicated that a total of 34 lncRNAs were annotated and classified into 149 KEGG pathways, the sheep thyroid hormone signaling pathway(path: ko04919),Spliceosome(path: ko03040), white blood cell cross Endothelial migration(path: ko04670), neurotrophin signaling pathway(path:ko04722), lysosome(path: ko04142), MAPK signaling pathway-pathway(path: ko04011), sphingolipid signaling pathway(path:ko04071), phagocytosis the body(path: ko04145), oxidative phosphorylation(path: ko00190) and other 9 KEGG pathways had more lncRNAs, while the remaining KEGG pathways had less lncRNA distribution. Through lncRNA-mRNA interaction network analysis, we found six co-expressed genes: MYO1G, TIMM29, CARM1, ADGRB1, SEPT4, and DESI2. 【Conclusion】 This study explored the expression profile of lncRNA in the spleen of non-diarrhea and diarrhea lambs for diarrhea. It was found that lncRNA differentially expressed in the spleen of non-diarrhea and diarrhea lambs, which helped to find out how lambs resist diarrhea and provided a scientific basis for lambs to resist diarrhea.
引文
[1]ORSKOV I,ORSKOV F.Episome-carried surface antigen K88 of Escherichia coli.I.Transmission of the determinant of the K88antigen and influence on the transfer of chromosomal markers.Journal of Bacteriology,1966,91(1):69-75.
    [2]STIRM S,ORSKOV I,ORSKOV F.K88,an episome-determined protein antigen of Escherichia coli.Nature,1966,209(5022):507-508.
    [3]KIM T,JEON Y J,CUI R,LEE J H,PENG Y,KIM S H,TILI E,ALDER H,CROCE C M.Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis.Journal of National Cancer Institute,2015,107(4).doi:10.1093/jnci/dju505.
    [4]OUYANG J,ZHU X M,CHEN Y H,WEI H T,CHEN Q H,CHI X J,QI B M,ZHANG L F,ZHAO Y,GAO F,WANG G S,CHEN J L.NRAV,a long noncoding RNA,modulates antiviral responses through suppression of interferon-stimulated gene transcription.Cell Host Microbe,2014,16(5):616-626.
    [5]LI Z,RANA T M.Decoding the noncoding:prospective of lncRNA-mediated innate immune regulation.RNA Biology,2014,11(8):979-985.
    [6]TURNER M,GALLOWAY A,VIGORITO E.Noncoding RNA and its associated proteins as regulatory elements of the immune system.Nature Immunology,2014,15(6):484-491.
    [7]HEWARD J A,LINDSAY M A.Long non-coding RNAs in the regulation of the immune response.Trends Immunology,2014,35(9):408-419.
    [8]REN C,DENG M,FAN Y,YANG H,ZHANG G,FENG X,LI F,WANG D,WANG F,ZHANG Y.Genome-wide analysis reveals extensive changes in LncRNAs during skeletal muscle development in Hu Sheep.Genes,2017,8(8):283-313.
    [9]ZHANG Y,YANG H,HAN L,LI F,ZHANG T,PANG J,FENG X,REN C,MAO S,WANG F.Long noncoding RNA expression profile changes associated with dietary energy in the sheep testis during sexual maturation.Scientific Reports,2017,7(1):5180.
    [10]YUE Y,GUO T,YUAN C,LIU J,GUO J,FENG R,NIU C,SUN X,YANG B.Integrated analysis of the roles of long noncoding RNA and coding RNA expression in sheep(Ovis aries)skin during initiation of secondary hair follicle.PLoS ONE.2016,11(6):e:0156890.
    [11]徐兴文.羊大肠杆菌病防治.中国畜禽种业,2017,13(4):112-113.XU X W.Prevention and treatment of sheep colibacillosis.The Chinese Livestock and Poultry Breeding,2017,13(4):112-113.(in Chinese)
    [12]张文静.羊大肠杆菌病的防控措施.畜牧兽医科技信息,2017(6):76.ZHANG W J.Prevention and control measures for sheep colibacillosis.Chinese Journal of Animal Husbandry and Veterinary Medicine,2017(6):76.(in Chinese)
    [13]KONG L,ZHANG Y,YE ZQ,LIU XQ,ZHAO SQ,WEI L,GAO G.CPC:assess the protein-coding potential of transcripts using sequence features and support vector machine.Nucleic Acids Research,2007,36:345-349.
    [14]SUN L,LUO H T,BU D C,ZHAO G G,YU K T,ZHANG C H,LIU Y N,CHEN R S,ZHAO Y.Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts.Nucleic Acids Research,2013,41(17):166.
    [15]FINN R D,BATEMAN A,CLEMENTS J,COGGILL P,EBERHARDT R Y,EDDY S R,HEGER A,HETHERINGTON K,HOLM L,MISTRY J,SONNHAMMER E L,TATE J,PUNTA M.The Pfam protein families database.Nucleic Acids Research,2014,42(Database issue):222-230.
    [16]LI A,ZHANG J,ZHOU Z.PLEK:A tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme.Bmc Bioinformatics,2014,15(1):311.
    [17]TRAPNELL C,WILLIAMS B A,PERTEA G,MORTAZAVI A,KWAN G,VAN BAREN M J,SALZBERG S L,WOLD B J,PACHTER L.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.Nature Biotechnology,2010,28(5):511-515.
    [18]ANDERS S,HUBER W.Differential expression analysis for sequence count data.Biology,2010,11:R106.
    [19]KANEHISA M,ARAKI M,GOTO S,HATTORI M,HIRAKAWA M,ITOH M,KATAYAMA T,KAWASHIMA S,OKUDA S,TOKIMATSUT,YAMANISHI Y.KEGG for linking genomes to life and the environment.Nucleic Acids Research.2008,36:480-484.
    [20]LEWIS S J,HEATON K W.Stool form scale as a useful guide to intestinal transit time.Scandinavian Journal of Gastroenterology,1997,32(9):920-924.
    [21]VENEZIANO D,NIGITA G,FERRO A.Computational approaches for the analysis of ncRNA through deep sequencing Te1chniques.Frontiers in Bioengineering&Biotechnology,2015,3(77):77.
    [22]MARTIGNANO F,ROSSI L,MAUGERI A,GALLàV,CONTEDUCAV,DE GIORGI U,CASADIO V,SCHEPISI G.Urinary RNA-based biomarkers for prostate cancer detection.Clinica Chimica Acta,2017,473:96-105.
    [23]HAO Y P,QIU J H,ZHANG D B,YU C G.Long non-coding RNADANCR,a prognostic indicator,promotes cell growth and tumorigenicity in gastric cancer.Tumour Biology,2017,39(6):1010428317699798.
    [24]HUANG Q,CHI Y,DENG J,LIU Y,LU Y,CHEN J,DONG S.Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer,long non-coding RNA.Scientific Reports,2017,7(1):9392.
    [25]LI M,LI X,ZHUANG Y,FLEMINGTON E K,ZHEN L,SHAN B.Induction of a novel isoform of the lncRNA HOTAIR in Claudin-low breast cancer cells attached to extracellular matrix.Molecular Oncology,2017,11(12):1698-1710.
    [26]YONEDA R,SATOH Y,YOSHIDA I,KAWAMURA S,KOTANI T,ATSUSHI.A genomic region transcribed into a long noncoding RNAinteracts with the Prss42/Tessp-2 promoter in spermatocytes during mouse spermatogenesis,and its flanking sequences can function as enhancers.Molecular Reproduction&Development,2016,83(6):541-557.
    [27]RAN M,CHEN B,LI Z,WU M,LIU X,HE C,ZHANG S,LI Z.Systematic identification of long non-coding RNAs in immature and mature porcine testes.Biology of Reproduction,2016,94(4):77.
    [28]CABILI M N,TRAPNELL C,GOFF L,KOZIOL M,TAZON-VEGAB,REGEV A,RINN J L.Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses.Genes&Development,2011,25(18):1915.
    [29]DERRIEN T,JOHNSON R,BUSSOTTI G,TANZER A,DJEBALI S,TILGNER H,GUERNEC G,MARTIN D,MERKEL A,KNOWLESDG,LAGARDE J,VEERAVALLI L,RUAN X,RUAN Y,LASSMANN T,CARNINCI P,BROWN J B,LIPOVICH L,GONZALEZ J M,THOMAS M,DAVIS C A,SHIEKHATTAR R,GINGERAS T R,HUBBARD T J,NOTREDAME C,HARROW J,GUIGóR.The GENCODE v7 catalog of human long noncoding RNAs:Analysis of their gene structure,evolution,and expression.Genome Research,2012,22:1775-1789.
    [30]GLSS B S,DINGER M E.The specificity of long moncoding RNAexpression.Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2015,1859(1):16-22.
    [31]LóPEZ-ORTEGA O,OVALLE-GARCíA E,ORTEGA-BLAKE I,ANTILLóN A,CHáVEZ-MUNGUíA B,PATI?O-LóPEZ G,FRAGOSO-SORIANO R,SANTOS-ARGUMEDO L.Myo1g is an active player in maintaining cell stiffness in B-lymphocytes.Cytoskeleton,2016,73(5):258-268.
    [32]CALLEGARI S,RICHTER F,CHOJNACKA K,JANS DC,LORENZI,PACHEU-GRAU D,JAKOBS S,LENZ C,URLAUB H,DUDEK J,CHACINSKA A,REHLING P.TIM29 is a subunit of the human carrier translocase required for protein transport.Febs Letters,2016,590(23):4147-4158.
    [33]KANG Y,BAKER M J,LIEM M,LOUBER J,MCKENZIE M,ATUKORALA I,ANG C S,KEERTHIKUMAR S,MATHIVANAN S,STOJANOVSKI D.Tim29 is a novel subunit of the human TIM22translocase and is involved in complex assembly and stability.e Life,5,(2016-08-14),2016,5:e17463.
    [34]YADAV N,LEE J,KIM J,SHEN J,HU MC,ALDAZ CM,BEDFORDM T.Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase1-deficient mice.Proceedings of the National Academy of Sciences of the United States of America,2003,100(11):6464-6468.
    [35]ZHANG Z,NIKOLAI B C,GATES L A,JUNG S Y,SIWAK E B,HEB,RICE A P,O'MALLEY B W,FENG Q.Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency.Nucleic Acids Research,2017,45(16):9348-9360.
    [36]KISHORE A,PURCELL R H,NASSIRI-TOOSI Z,HALL R A.Stalk-dependent and stalk-independent signaling by the adhesion Gprotein-coupled receptors GPR56(ADGRG1)and BAI1(ADGRB1).Journal of Biological Chemistry,2015,291(7):3385.
    [37]JEON T W,YANG H,LEE CG,OH ST,SEO D,BAIK I H,LEE EH,YUN I,PARK KR,LEE Y H.Electro-hyperthermia up-regulates tumour suppressor Septin 4 to induce apoptotic cell death in hepatocellular carcinoma.International Journal of Hyperthermia,2016,32(6):1-9.
    [38]IHARA M,KINOSHITA A,YAMADA S,TANAKA H,TANIGAKI A,KITANO A,GOTO M,OKUBO K,NISHIYAMA H,OGAWA O,TAKAHASHI C,ITOHARA S,NISHIMUNE Y,NODA M,KINOSHITA M.Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa.Developmental Cell,2005,8(3):343-352.
    [39]KISSEL H,GEORGESCU M M,LARISCH S,MANOVA K,HUNNICUTT G R,STELLER H.The Sept4 septin locus is required for sperm terminal differentiation in mice.Developmental Cell,2005,8(3):353-364.
    [40]SHEN C C,CUI X Y,HE Y,KANG Y H,YI C,YANG J L,GOU L T.High phosphorylation status of AKT/mTOR signal in DESI2-reduced pancreatic ductal adenocarcinoma.Pathology&Oncology Research,2015,21(2):267-272.
    [41]LIN C,YAN H,YANG J,LI L,TANG M,ZHAO X,NIE C,LUO N,WEI Y,YUAN Z.Combination of DESI2 and IP10 gene therapy significantly improves therapeutic efficacy against murine carcinoma.Oncotarget,2017,8(34):56281-56295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700