Electrochemical CO_2 reduction over nitrogen-doped SnO_2 crystal surfaces
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical CO_2 reduction over nitrogen-doped SnO_2 crystal surfaces
  • 作者:Yuefeng ; Zhang ; Jianjun ; Liu ; Zengxi ; Wei ; Quanhui ; Liu ; Caiyun ; Wang ; Jianmin ; Ma
  • 英文作者:Yuefeng Zhang;Jianjun Liu;Zengxi Wei;Quanhui Liu;Caiyun Wang;Jianmin Ma;School of Physics and Electronics, Hunan University;ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong;
  • 英文关键词:CO2 reduction reaction;;SnO2;;Crystal surface;;Electrocatalysis;;First principles
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:School of Physics and Electronics, Hunan University;ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.33
  • 基金:supported by the National Natural Science Foundation of China (51302079);; the Natural Science Foundation of Hunan Province (Grant No. 2017JJ1008)
  • 语种:英文;
  • 页:TRQZ201906004
  • 页数:9
  • CN:06
  • ISSN:10-1287/O6
  • 分类号:30-38
摘要
Crystal planes of a catalyst play crucial role in determining the electrocatalytic performance for CO_2 reduction.The catalyst SnO_2 can convert CO_2 molecules into valuable formic acid(HCOOH).Incorporating heteroatom N into SnO_2 further improves its catalytic activity.To understand the mechanism and realize a highly efficient CO_2-to-HCOOH conversion,we used density functional theory(DFT)to calculate the free energy of CO_2 reduction reactions(CO_2RR)on different crystal planes of N-doped SnO_2(N-SnO_2).The results indicate that N-SnO_2 lowered the activation energy of intermediates leading to a better catalytic performance than pure SnO_2.We also discovered that the N-Sn O_2 (211)plane possesses the most suitable free energy during the reduction process,exhibiting the best catalytic ability for the CO_2-to-HCOOH conversion.The intermediate of CO_2RR on N-SnO_2 is HCOO~*or COOH~* instead of OCHO~*.These results may provide useful insights into the mechanism of CO_2RR,and promote the development of heteroatomdoped catalyst for efficient CO_2RR.
        Crystal planes of a catalyst play crucial role in determining the electrocatalytic performance for CO_2 reduction.The catalyst SnO_2 can convert CO_2 molecules into valuable formic acid(HCOOH).Incorporating heteroatom N into SnO_2 further improves its catalytic activity.To understand the mechanism and realize a highly efficient CO_2-to-HCOOH conversion,we used density functional theory(DFT)to calculate the free energy of CO_2 reduction reactions(CO_2RR)on different crystal planes of N-doped SnO_2(N-SnO_2).The results indicate that N-SnO_2 lowered the activation energy of intermediates leading to a better catalytic performance than pure SnO_2.We also discovered that the N-Sn O_2 (211)plane possesses the most suitable free energy during the reduction process,exhibiting the best catalytic ability for the CO_2-to-HCOOH conversion.The intermediate of CO_2RR on N-SnO_2 is HCOO~*or COOH~* instead of OCHO~*.These results may provide useful insights into the mechanism of CO_2RR,and promote the development of heteroatomdoped catalyst for efficient CO_2RR.
引文
[1]X.Duan,J.Xu,Z.Wei,J.Ma,S.Guo,S.Wang,H.Liu,S.Dou,Adv.Mater.29(2017)1701784.
    [2]D.Gao,H.Zhou,F.Cai,J.Wang,G.Wang,X.Bao,ACS Catal 8(2018)1510-1519.
    [3]Y.X.Duan,F.L.Meng,K.H.Liu,S.S.Yi,S.J.Li,J.M.Yan,Q.Jiang,Adv.Mater.30(2018)1706194.
    [4]B.Zhang,J.Zhang,J.Energy Chem.26(2017)1050-1066.
    [5]C.Genovese,C.Ampelli,S.Perathoner,G.Centi,J.Energy Chem.22(2013)202-213.
    [6]J.Yu,H.Liu,S.Song,Y.Wang,P.Tsiakaras,Appl.Catal.A:General 545(2017)159-166.
    [7]M.Grasemann,G.Laurenczy,Energy Environ.Sci.5(2012)8171-8181.
    [8]N.M.Aslam,M.S.Masdar,S.K.Kamarudin,W.R.W.Daud,APCBEE Procedia 3(2012)33-39.
    [9]X.Yu,P.G.Pickup,J.Power Sources 182(2008)124-132.
    [10]G.A.El-Nagar,K.M.Dawood,M.S.El-Deab,B.E.Al-Andouli,Appl.Catal.B:Environ.213(2017)118-126.
    [11]R.Zhang,W.Lv,L.Lei,Appl.Surf.Sci.356(2015)24-29.
    [12]T.Shinagawa,G.O.Larrazábal,A.J.Martín,F.Krumeich,J.Pérezramírez,ACSCatal.8(2017)837-844.
    [13]J.Wu,Y.Huang,W.Ye,Y.Li,Adv.Sci.4(2017)1700194.
    [14]N.Han,Y.Wang,H.Yang,J.Deng,J.Wu,Y.Li,Y.Li,Nature Commun.9(2018)1320.
    [15]K.H.Liu,H.X.Zhong,S.J.Li,Y.X.Duan,M.M.Shi,X.B.Zhang,J.M.Yan,Q.Jiang,Progress in Mater.Sci.92(2017)64-111.
    [16]J.Zhang,F.Li,M.Xue,J.Li,X.Ma,L.Chen,X.Zhang,D.Macfarlane,Angew.Chem.129(2017)14718.
    [17]S.Bashir,S.S.Hossain,S.U.Rahman,S.Ahmed,A.Al-Ahmed,M.M.Hossain,J.CO2Utilization 16(2016)346-353.
    [18]M.Manikandan,T.Tanabe,G.V.Ramesh,R.Kodiyath,S.Ueda,Y.Sakuma,Y.Homma,A.Dakshanamoorthy,K.Ariga,H.Abe,Phys.Chem.Chem.Phys.18(2016)5932-5937.
    [19]G.Xu,L.Zhang,C.He,D.Ma,Z.Lu,Sens.Actuators B Chem.221(2015)717-722.
    [20]Q.Li,J.Fu,W.Zhu,Z.Chen,B.Shen,L.Wu,Z.Xi,T.Wang,G.Lu,J.J.Zhu,J.Am.Chem.Soc.139(2017)4290.
    [21]Y.Fu,Y.Li,X.Zhang,Y.Liu,J.Qiao,J.Zhang,D.P.Wilkinson,Appl.Energy 175(2016)536-544.
    [22]R.Daiyan,X.Lu,W.H.Saputera,H.N.Yun,R.Amal,ACS Sustain.Chem.Eng.7(2017)2542-2550.
    [23]Q.Li,W.Zhuo,Z.Miao,P.Hou,K.Peng,J.Energy Chem.26(2017)825-829.
    [24]R.Daiyan,X.Lu,H.N.Yun,R.Amal,Catal.Sci.Technol.7(2017)2542-2550.
    [25]Q.Li,J.Fu,W.Zhu,Z.Chen,B.Shen,L.Wu,Z.Xi,T.Wang,G.Lu,J.J.Zhu,J.Am.Chem.Soc.139(2017)4290-4293.
    [26]C.Dong,J.Fu,H.Liu,T.Ling,J.Yang,S.Z.Qiao,X.W.Du,J.Mater.Chem.A 5(2017)7184-7190.
    [27]D.H.Won,H.Shin,J.Koh,J.Chung,H.S.Lee,H.Kim,S.I.Woo,Angew.Chem.Int.Ed.55(2016)9297-9300.
    [28]J.Rosen,G.S.Hutchings,Q.Lu,S.Rivera,Y.Zhou,D.G.Vlachos,F.Jiao,ACSCatal.5(2015)150605133022004.
    [29]Z.Yang,H.Wang,W.Song,W.Wei,Q.Mu,B.Kong,P.Li,H.Yin,J.Colloid Interf.Sci.486(2016)232-240.
    [30]Y.Fu,Y.Li,X.Zhang,Y.Liu,X.Zhou,J.Qiao,Chinese J.Catal 37(2016)1081-1088.
    [31]A.Rabis,D.Kramer,E.Fabbri,M.Worsdale,R.K?tz,T.J.Schmidt,J.Phys.Chem.C 118(2014)11292-11302.
    [32]M.Manikandan,T.Tanabe,G.V.Ramesh,R.Kodiyath,S.Ueda,Y.Sakuma,Y.Homma,A.Dakshanamoorthy,K.Ariga,H.Abe,Phys.Chem.Chem.Phys 18(2016)5932-5937.
    [33]Q.Fu,L.C.C.Rausseo,U.Martinez,P.I.Dahl,J.M.G.Lastra,P.E.Vullum,I.H.Svenum,T.Vegge,ACS Appl.Mater.Interf.7(2015)27782-27795.
    [34]G.Kresse,J.Furthmüller,Phys Rev B Condens Matter 54(1996)11169-11186.
    [35]J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77(1996)3865-3868.
    [36]P.D.Borges,L.M.R.Scolfaro,H.W.L.Alves,E.F.D.S.Jr,Theor.Chem.Acc.126(2009)39-44.
    [37]V.E.Henrich,P.A.Cox,U.Diebold,The Surface Science of Metal Oxides,48,Cambridge University Press,1994 138-138.
    [38]J.K.N?rskov,J.Rossmeisl,A.Logadottir,L.Lindqvist,J.R.Kitchin,T.Bligaard,H.Jónsson,J.Phys.Chem.B 108(2004)17886-17892.
    [39]W.Sheng,S.Kattel,S.Yao,B.Yan,Z.Liang,C.Hawxhurst,Q.Wu,J.G.Chen,Energy Environ.Sci.10(2017)1180-1185.
    [40]L.Z,M.D,Y.L,W.X,X.G,Y.Z,Phys.Chem.Chem.Phys.16(2014)12488-12494.
    [41]M.Guo,H.Yang,X.Jian,J.Li,Z.Liang,P.Han,Appl.Surf.Sci.428(2018)851-860.
    [42]K.Wang,Z.Ye,C.Liu,D.Xi,C.Zhou,Z.Shi,H.Xia,G.Liu,G.Qiao,ACS Appl.Mater.Interfaces 8(2016)2910-2916.
    [43]A.J.G?ttle,M.T.M.Koper,Chem.Sci.8(2017)458-465.
    [44]Z.Wei,Y.Zhang,S.Wang,C.Wang,J.Ma,J.Mater.Chem.A 6(2018)13790-13796.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700