用户名: 密码: 验证码:
重庆秀山南沱冰期后的海陆环境变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Marine and Continental Environmental Changes after Nantuo Glaciation in Xiushan,Chongqing
  • 作者:冯帆 ; 关平 ; 刘文汇 ; 刘沛显
  • 英文作者:FENG Fan;GUAN Ping;LIU WenHui;LIU PeiXian;Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Education,School of Earth and Space Sciences,Peking University;SINOPEC Petroleum Exploration and Development Research Institute;
  • 关键词:雪球事件 ; 南沱冰期 ; 酸不溶物 ; 环境变化 ; 地球化学
  • 英文关键词:Snowball Earth;;Nantuo glaciation;;acid-insoluble residua;;environmental changes;;geochemistry
  • 中文刊名:CJXB
  • 英文刊名:Acta Sedimentologica Sinica
  • 机构:造山带与地壳演化教育部重点实验室北京大学地球与空间科学学院;中国石化石油勘探开发研究院;
  • 出版日期:2018-03-30 09:15
  • 出版单位:沉积学报
  • 年:2018
  • 期:v.36
  • 基金:国家重点基础研究发展计划(“973”计划)项目(2012CB214801)~~
  • 语种:中文;
  • 页:CJXB201803009
  • 页数:11
  • CN:03
  • ISSN:62-1038/P
  • 分类号:108-118
摘要
扬子地区发育地层所记录的南沱冰期在时间上与Marinoan冰期相当,被认为是"雪球事件"的产物,受到广泛关注。借助于重庆秀山长河桥剖面的南沱组冰碛岩上覆陡山沱组盖帽白云岩和页岩样品的精细采集,选取冰碛岩之上2.5 m内的地层进行同位素比值和元素含量测试,并尝试性的使用酸不溶物的元素地球化学数据,对冰期后可能出现的环境变化进行了综合分析,结果表明:盖帽白云岩C同位素数据基本符合海水分层混合模式特征;U/Th值也反映出该地区在雪球后经历了由缺氧—贫氧环境向贫氧—氧化环境的迅速转变,可能反映了雪球后缺氧富有机质的深部大洋水随上升洋流上涌并被迅速氧化的过程;强烈的Eu正异常的出现,可能与埃迪卡拉纪海底火山、热液活动频繁出现或近源热液活动相关;盖帽碳酸盐岩样品中出现Ce轻微负异常,表明其形成于弱氧化环境;~(87)Sr/~(86)Sr值和Y/Ho值均呈现伴有大量陆源碎屑物输入的特点;盖帽碳酸盐岩的酸不溶物可以反映当时的大陆风化背景,其化学蚀变指数(CIA)稳定在72左右,说明当时的大陆环境具有温暖湿润的特征,化学风化作用强度中等。综上所述,在南陀冰期结束后,秀山长河桥剖面的沉积环境经历了缺氧—贫氧环境向贫氧—氧化环境的迅速转变,同时,随着上升洋流的出现原有的冰期海水分层被迅速破坏,并可能伴随着地表径流的不断增强,同时热液活动在这一时期也频繁发生。在这一时期,剖面附近的大陆环境也迅速由冰期过渡为温暖湿润的环境。
        It is believed that the Nantuo glaciation represented by sediments in the Yangzte Platform could be as a Snowball Earth event and restricted to the Marinoan glaciation in age. The carbon,oxygen and strontium isotopes,and elements of whole-rock and acid-insoluble residua of the ~ 2.5 m-thick Doushantuo cap dolostone and shale from the Changheqiao section in Xiushan,Chongqing were measured and their geochemical features indicated some specific environmental co-changes of ocean and continent during the post-Nantuo Glaciation warming. The δ~(13) CPDBvaried from-3.4‰ to-5.2‰,which could be explained by the model of stratification and mixing of ocean. The ratios of U/Th suggested that the sedimentary environments were rapidly changed from anoxic to oxic during the post-glacial warming.These changes might be related to the upwelling and oxidizing of the anoxic deep seawater. The lower 0.3 m samples have strong positive Eu anomaly,that may be related to the frequent hydrothermal activities in the Ediacaran ocean or proximal hydrothermal activity. The negative Ce anomaly in the cap dolostone might be due to oxic conditions. The values of Y/Ho and ~(87) Sr/~(86) Sr probably displayed that a large number of terrigenous residuas were carried into ocean by the increasing surface runoff,during the post-glaciation. The acid-insoluble residuas of cap dolostone can be used to study the background of the average degree of continental chemical weathering. The CIA of acid-insoluble residuas ranges from 71.2 to 72.9,which indicated a warm and wet environment and medium chemical weathering.
引文
[1]Frimmel H E,Kl9tzli U S,Siegfried P R.New Pb-Pb single zircon age constraints on the timing of Neoproterozoic glaciation and continental break-up in Namibia[J].The Journal of Geology,1996,104(4):459-469.
    [2]Allen A P,Brown J H,Gillooly J F.Global biodiversity,biochemical kinetics,and the energetic-equivalence rule[J].Science,2002,297(5586):1545-1548.
    [3]Bowring S,Myrow P,Landing E,et al.Geochronological constraints on terminal Neoproterozoic events and the rise of Metazoans[J].Geophysical Research Abstracts,2003,5(1):13219.(请核对期号)
    [4]Hoffman K H,Condon D J,Bowring S A,et al.U-Pb zircon date from the Neoproterozoic Ghaub Formation,Namibia:constraints on Marinoan glaciation[J].Geology,2004,32(9):817-820.
    [5]Knoll A H.Learning to tell Neoproterozoic time[J].Precambrian Research,2000,100(1/2/3):3-20.
    [6]赵彦彦,郑永飞.全球新元古代冰期的记录和时限[J].岩石学报,2011,27(2):545-565.[Zhao Yanyan,Zheng Yongfei.Record and time of Neoproterozoic glaciations on Earth[J].Acta Petrologica Sinica,2011,27(2):545-565.]
    [7]Barfod G H,Albarède F,Knoll A H,et al.New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils[J].Earth and Planetary Science Letters,2002,201(1):203-212.
    [8]赵小明,刘圣德,张权绪,等.鄂西长阳南华系地球化学特征的气候指示意义及地层对比[J].地质学报,2011,85(4):576-585.[Zhao Xiaoming,Liu Shengde,Zhang Quanxu,et al.Geochemical characters of the Nanhua System in Changyang,western Hubei province and its implication for climate and sequence correlation[J].Acta Geologica Sinica,2011,85(4):576-585.]
    [9]Shen Y N,Zhang T G,Chu X L.C-isotopic stratification in a Neoproterozoic postglacial ocean[J].Precambrian Research,2005,137(3/4):243-251.
    [10]Shen B,Xiao S H,Kaufman A J,et al.Stratification and mixing of a post-glacial Neoproterozoic ocean:Evidence from carbon and sulfur isotopes in a cap dolostone from northwest China[J].Earth and Planetary Science Letters,2008,265(1/2):209-228.
    [11]Shen B,Xiao S H,Zhou C M,et al.Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin,NW China:Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event?[J].Precambrian Research,2010,177(3/4):241-252.
    [12]Giddings J A,Wallace M W.Sedimentology and C-isotope geochemistry of the‘Sturtian’cap carbonate,South Australia[J].Sedimentary Geology,2009,216(1/2):1-14.
    [13]Dobrzinski N,Bahlburg H,Strauss H,et al.Geochemical climate proxies applied to the neoproterozoic glacial succession on the Yangtze Platform,South China[M]//Jenkins G S,Mcmenamin M AS,Mckay C P,et al.The Extreme Proterozoic:Geology,Geochemistry,and Climate.Washington DC:The American Geophysical Union,2004:13-32.
    [14]田兴磊,雒昆利,王少彬,等.长江三峡地区成冰纪-埃迪卡拉纪转换时期微量元素和稀土元素地球化学特征[J].古地理学报,2014,16(4):483-502.[Tian Xinglei,Luo Kunli,Wang Shaobin,et al.Geochemical characteristics of trace elements and rare earth elements during the Cryogenian-Ediacaran transition in Yangtze Gorges area[J].Journal of Palaeogeography,2014,16(4):483-502.]
    [15]Swanson-Hysell N L,Rose C V,Calmet C C,et al.Cryogenian glaciation and the onset of carbon-isotope decoupling[J].Science,2010,328(5978):608-611.
    [16]王世杰,季宏兵,欧阳自远,等.碳酸盐岩风化成土作用的初步研究[J].中国科学(D辑),1999,29(5):441-449.[Wang Shijie,Ji Hongbing,Ouyang Ziyuan,et al.Preliminary study on weathering and pedogenesis of carbonate rock[J].Science in China Series D:Earth Sciences,1999,29(5):441-449.]
    [17]Veizer J,Ala D,Azm K,et al.87Sr/86Sr,δ13C andδ18O evolution of Phanerozoic seawater[J].Chemical Geology,1999,161(1/2/3):59-88.
    [18]Zhao Y Y,Zheng Y F,Chen F.Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui,South China[J].Chemical Geology,2009,265(3/4):345-362.
    [19]Mclennan S M.Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes[J].Reviews in Mineralogy and Geochemistry,1989,21(1):169-200.
    [20]Bau M,Dulski P.Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations,Transvaal Supergroup,South Africa[J].Precambrian Research,1996,79(1/2):37-55.
    [21]Bolhar R,Van Kranendonk M J.A non-marine depositional setting for the northern Fortescue Group,Pilbara Craton,inferred from trace element geochemistry of stromatolitic carbonates[J].Precambrian Research,2007,155(3/4):229-250.
    [22]常华进,储雪蕾,冯连君,等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评,2009,55(1):91-99.[Chang Huajin,Chu Xuelei,Feng Lianjun,et al.Redox sensitive trace elements as Paleoenvironments proxies[J].Geological Review,2009,55(1):91-99.]
    [23]Schroder S,Grotzinger J P.Evidence for anoxia at the EdiacaranCambrian boundary:the record of redox-sensitive trace elements and rare earth elements in Oman[J].Journal of the Geological Society,2007,164(1):175-187.
    [24]Tribovillard N,Algeo T J,Lyons T,et al.Trace metals as paleoredox and paleoproductivity proxies:an update[J].Chemical Geology,2006,232(1/2):12-32.
    [25]Jones B,Manning D A C.Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones[J].Chemical Geology,1994,111(1/2/3/4):111-129.
    [26]Algeo T J,Maynard J B.Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J].Chemical Geology,2004,206(3/4):289-318.
    [27]Calvert S E,Pedersen T F.Geochemistry of Recent oxic and anoxic marine sediments:Implications for the geological record[J].Marine Geology,1993,113(1/2):67-88.
    [28]Turekian K K,Wedepohl K H.Distribution of the elements in some major units of the Earth's crust[J].GSA Bulletin,1961,72(2):175-191.
    [29]Haskin L A,Frey F A.Dispersed and not-so-rare earths[J].Science,1966,152(3720):299-314.
    [30]Kaufman A J,Knoll A H.Neoproterozoic variations in the C-isotopic composition of seawater:stratigraphic and biogeochemical implications[J].Precambrian Research,1995,73(1/2/3/4):27-49.
    [31]周传明.贵州瓮安地区上震旦统碳同位素特征[J].地层学杂志,1997,21(2):124-129.[Zhou Chuanming.Upper Sinian carbon isotope profile in Weng'an,Guizhou[J].Journal of Stratigraphy,1997,21(2):124-129.]
    [32]Derry L A,Brasier M D,Corfield R M,et al.Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton:a paleoenvironmental record during the‘Cambrian explosion’[J].Earth and Planetary Science Letters,1994,128(3/4):671-681.
    [33]Halverson G P,Hoffman P F,Schrag D P,et al.Toward a Neoproterozoic composite carbon-isotope record[J].GSA Bulletin,2005,117(9/10):1181-1207.
    [34]Halverson G P,Poitrasson F,Hurtgen M T.Fe isotope composition of Neoproterozoic cap dolostones:implications for snowball seawater composition?[J].Geochimica et Cosmochimica Acta,2006,70(18):A224.
    [35]陈寿铭,尹崇玉,刘鹏举,等.峡东地区埃迪卡拉系陡山沱组碳同位素特征研究进展与国内外对比[J].地球学报,2009,30(4):475-486.[Chen Shouming,Yin Chongyu,Liu Pengju,et al.Research advances and correlations of carbon isotopic compositions in the Ediacaran Doushantuo Formation,East Yangtze Gorges,South China[J].Acta Geoscientica Sinica,2009,30(4):475-486.]
    [36]Hurtgen M T,Arthur M A,Suits N S,et al.The sulfur isotopic composition of Neoproterozoic seawater sulfate:implications for a snowball Earth?[J].Earth and Planetary Science Letters,2002,203(1):413-429.
    [37]Liu C,Wang Z R,Raub T D.Geochemical constraints on the origin of Marinoan cap dolostones from Nuccaleena Formation,South Australia[J].Chemical Geology,2013,351:95-104.
    [38]Mckirdy D M,Burgess J M,Lemon N M,et al.A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide Fold-Thrust Belt,South Australia[J].Precambrian Research,2001,106(1/2):149-186.
    [39]Harris K J,Carey A E,Lyons W B,et al.Solute and isotope geochemistry of subsurface ice melt seeps in Taylor Valley,Antarctica[J].GSA Bulletin,2007,119(5/6):548-555.
    [40]Shields G A.Neoproterozoic cap carbonates:a critical appraisal of existing models and the plumeworld hypothesis[J].Terra Nova,2005,17(4):299-310.
    [41]Hoffman P F.Strange bedfellows:glacial diamictite and cap carbonate from the Marinoan(635 Ma)glaciation in Namibia[J].Sedimentology,2011,58(1):57-119.
    [42]Ohno T,Komiya T,Ueno Y,et al.Determination of88Sr/86Sr mass-dependent isotopic fractionation and radiogenic isotope variation of87Sr/86Sr in the Neoproterozoic Doushantuo Formation[J].Gondwana Research,2008,14(1/2):126-133.
    [43]闫斌,朱祥坤,唐索寒,等.三峡地区陡山沱早期水体性质的稀土元素和锶同位素制约[J].现代地质,2010,24(5):832-839.[Yan Bin,Zhu Xiangkun,Tang Suohan,et al.Characteristics of Sr isotopes and rare earth elements of cap carbonates in Doushantuo Formation in the Three Gorges Area[J].Geoscience,2010,24(5):832-839.]
    [44]Huang J,Chu X L,Jiang G Q,et al.Hydrothermal origin of elevated iron,manganese and redox-sensitive trace elements in the c.635 Ma Doushantuo cap carbonate[J].Journal of the Geological Society,2011,168(3):805-816.
    [45]Jiang S Y,Zhao H X,Chen Y Q,et al.Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing,Jiangsu province,China[J].Chemical Geology,2007,244(3/4):584-604.
    [46]蒋干清,史晓颖,张世红.甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩[J].科学通报,2006,51(10):1121-1138.[Jiang Ganqing,Shi Xiaoying,Zhang Shihong.Methane seeps,methane hydrate destabilization,and the late Neoproterozoic postglacial cap carbonates[J].Chinese Science Bulletin,2006,51(10):1121-1138.]
    [47]Olivier N,Boyet M.Rare earth and trace elements of microbialites in Upper Jurassic coral-and sponge-microbialite reefs[J].Chemical Geology,2006,230(1/2):105-123.
    [48]German C R,Elderfield H.Application of the Ce anomaly as a paleoredox indicator:the ground rules[J].Paleoceanography,1990,5(5):823-833.
    [49]Pattan J N,Pearce N J G,Mislankar P G.Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment:a case study from the Central Indian Ocean Basin[J].Chemical Geology,2005,221(3/4):260-278.
    [50]Wilde P,Quinby-Hunt M S,Erdtmann B D.The whole-rock cerium anomaly:a potential indicator of eustatic sea-level changes in shales of the anoxic facies[J].Sedimentary Geology,1996,101(1/2):43-53.
    [51]Macleod K G,Irving A J.Correlation of cerium anomalies with indicators of paleoenvironment[J].Journal of Sedimentary Research,1996,66(5):948-955.
    [52]Nothdurft L D,Webb G E,Kamber B S.Rare earth element geochemistry of Late Devonian reefal carbonates,Canning Basin,Western Australia:confirmation of a seawater REE proxy in ancient limestones[J].Geochimica et Cosmochimica Acta,2004,68(2):263-283.
    [53]Chen D F,Dong W Q,Qi L,et al.Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna[J].Chemical Geology,2003,201(1/2):103-118.
    [54]Guo Q J,Shields G A,Liu C Q,et al.Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China:Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):194-216.
    [55]Nozaki Y,Zhang J,Amakawa H.The fractionation between Y and Ho in the marine environment[J].Earth and Planetary Science Letters,1997,148(1/2):329-340.
    [56]Mclennan S M.Relationships between the trace element composition of sedimentary rocks and upper continental crust[J].Geochemistry,Geophysics,Geosystems,2001,2(4):1021.
    [57]Alibo D S,Nozaki Y.Rare earth elements in seawater:particle association,shale-normalization,and Ce oxidation[J].Geochimica et Cosmochimica Acta,1999,63(3/4):363-372.
    [58]Bock B,Mclennan S M,Hanson G N.Geochemistry and provenance of the middle Ordovician Austin Glen member(Normanskill formation)and the Taconian orogeny in New England[J].Sedimentology,1998,45(4):635-655.
    [59]Roddaz M,Viers J,Brusset S,et al.Controls on weathering and provenance in the Amazonian foreland basin:Insights from major and trace element geochemistry of Neogene Amazonian sediments[J].Chemical Geology,2006,226(1/2):31-65.
    [60]Schoenborn W A,Fedo C M.Provenance and paleoweathering reconstruction of the Neoproterozoic Johnnie Formation,southeastern California[J].Chemical Geology,2011,285(1/2/3/4):231-255.
    [61]Jian X,Guan P,Zhang W,et al.Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin,northeastern Tibetan Plateau:Implications for provenance and weathering[J].Chemical Geology,2013,360-361:74-88.
    [62]Feng F,Guan P,Liu W H,et al.Geochemistry of Altungol cap dolostones from the Tarim Basin,NW China[J].Arabian Journal of Geosciences,2016,9(18):715.
    [63]Nesbitt H W,Young G M.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature,1982,299(5885):715-717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700