基于双向流固耦合水平轴风力机输出功率分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on output power of horizontal axis wind turbine based on two-way fluid-structure interaction
  • 作者:王占洋 ; 张立茹 ; 贺玲丽 ; 汪建文 ; 胡雅娟
  • 英文作者:WANG Zhanyang;ZHANG Liru;HE Lingli;WANG Jianwen;HU Yajuan;College of Energy and Power Engineering,Inner Mongolia University of Technology;Key Laboratory of Wind and Solar Power Energy Utilization Technology,Ministry of Education and Inner Mongolia Construction;Technology Center of Solid Waste and Chemical Management,Inner Mongolia Autonomous Region Environmental Protection Department;
  • 关键词:双向流固耦合 ; 水平轴风力机 ; 叶片变形 ; 输出功率
  • 英文关键词:two-way fluid-structure interaction;;horizontal axis wind turbine;;blade deformation;;output power
  • 中文刊名:PGJX
  • 英文刊名:Journal of Drainage and Irrigation Machinery Engineering
  • 机构:内蒙古工业大学能源与动力工程学院;风能太阳能利用技术省部共建教育部重点实验室;内蒙古自治区环境保护厅固体废弃物与化学品管理技术中心;
  • 出版日期:2017-10-31 23:50
  • 出版单位:排灌机械工程学报
  • 年:2017
  • 期:v.35;No.214
  • 基金:内蒙古自然科学基金资助项目(2014MS0547,2015MS0507)
  • 语种:中文;
  • 页:PGJX201711008
  • 页数:6
  • CN:11
  • ISSN:32-1814/TH
  • 分类号:61-66
摘要
针对流固耦合作用影响风力机的气动性能问题,基于CFX与ANSYS对风力机双向流固耦合模拟及未考虑耦合的风力机流场和结构场进行模拟,探究在额定工况下流固耦合作用对风力机输出功率影响情况.通过对比分析耦合前后的叶片表面压力分布、叶片的变形、风轮的扭矩进而研究风力机输出功率的变化.结果表明:考虑流固耦合作用时,风轮压力面的正压值基本不变,吸力面的负压值明显减小,叶片表面的压力差增大,而叶片在流固耦合作用下表面压力分布趋势无明显变化;叶片主要变形集中在靠近叶尖处,且越接近叶尖变形越大,呈非线性分布,叶片在流固耦合后的变形量相对未耦合增大,叶片的变形主要是沿着轴向的挥舞变形;且叶片的扭矩也更大,流固耦合作用下计算风力机输出功率为383 W,比未耦合增大1.6%,与试验值更接近.
        Since fluid-structure interaction of wind turbine can affect its aerodynamic performance,two-way fluid-structure interaction simulations were carried out to analyze effects of the interaction on the output power of a wind turbine under the rated condition based on CFX and ANSYS. The pressure distribution on blade surface,blade deformation,torque on the rotor and output power are compared and analyzed before and after the fluid-structure interaction. The results show that under fluid-structure interaction conditions,the positive pressure on the pressure side remains unchanged basically,and the negative pressure on the suction side is significantly reduced,resulting in an increasedpressure difference across both sides. The pressure distributions on both the sides under fluid-structure interaction don't show a significant change from the case without fluid-structure interaction. The blade deformation mainly occurs near the blade tip,and increases nonlinearly towards the tip. Furthermore,the deformation is intensified in fluid-structure interaction,and mainly is waving deformation along the axial direction. The torque is larger in fluid-structure interaction,in consequence,the wind turbine output power arises by 1. 6% to reach 383 W compared with the case without fluid-structure interaction,which is much closer than its experimental value.
引文
[1]宋学官,蔡林,张华.ANSYS流固耦合分析与工程实例[M].北京:中国水利水电出版社,2012.
    [2]CHENG T H,OH I K.Fluid-structure coupled analyses of composite wind turbine blades[J].Advanced materials research,2007,26/28:41-44.
    [3]TOJO B M,MARTA A C.Aero-structural blade design of a high-power wind turbine[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC structures,structural dynamics,and materials conference,2013.
    [4]MACPHEE D W,BEYENE A.Fluid-structure interaction analysis of a morphing vertical axis wind turbine[J].Journal of fluids&structures,2016,60:143-159.
    [5]李媛,康顺,王建录,等.2.5 MW风力机叶片流固耦合数值模拟[J].工程热物理学报,2013,34(1):71-74.LI Yuan,KANG Shun,WANG Jianlu,et al.Numerical simulation of fluid-structure coupling of 2.5 MW wind turbine blades[J].Journal of engineering thermophysics,2013,34(1):71-74.(in Chinese)
    [6]孙海涛,熊鹰,时立攀.螺旋桨流固耦合特性的数值模拟[J].江苏大学学报(自然科学版),2015,36(1):23-29.SUN Haitao,XIONG Ying,SHI Lipan.Numerical simulation of fluid structure interaction characteristics for propeller[J].Journal of Jiangsu University(natural science edition),2015,36(1):23-29.(in Chinese)
    [7]胡丹梅,张志超,孙凯,等.风力机叶片流固耦合计算分析[J].中国电机工程学报,2013,33(17):98-104.HU Danmei,ZHANG Zhichao,SUN Kai,et al.Computational analysis of wind turbine blades based on fluidstructure interaction[J].Proceedings of the CSEE,2013,33(17):98-104.(in Chinese)
    [8]黄思,张雪娇,宿向辉,等.基于离心泵全流场的流固耦合分析[J].流体机械,2015,43(11):38-42.HUANG Si,ZHANG Xuejiao,SU Xianghui,et al.Fluidsolid interaction analysis of centrifugal pump based on whole flow field[J].Fluid machinery,2015,43(11):38-42.(in Chinese)
    [9]胡鹏飞,曹丽华,李勇.风力机叶片及塔架流固耦合分析[J].可再生能源,2013,31(11):66-71.HU Pengfei,CAO Lihua,LI Yong.Fluid-structure coupling analysis for blades and tower of wind power[J].Renewable energy resources,2013,31(11):66-71.(in Chinese)
    [10]YURI BAZILEVS,MINGCHEN HSU,KENJI TAKIZAWA,et al.Ale-vms and st-vms methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction[J].Mathematical models&methods in applied sciences,2012,22(S2):1230002.
    [11]TEZDUYAR T E,SATHE S,STEIN K.Solution techniques for the fully discretized equations in computation of fluid-structure interactions with the space—time formulations[J].Computer methods in applied mechanics&engineering,2006,195(41):5743-5753.
    [12]HSU M C,BAZILEVS Y.Fluid-structure interaction modeling of wind turbines:simulating the full machine[J].Computational mechanics,2012,50(6):821-833.
    [13]时强.复合材料风电叶片流固耦合数值模拟[D].武汉:武汉理工大学,2013.
    [14]ROCHA P A C,ROCHA H H B,CARNEIRO F O M,et al.A case study on the calibration of the k-ω,SST(shear stress transport)turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils[J].Energy,2016,97:144-150.
    [15]MOSHFEGHI M,SONG Y J,XIE Y H.Effects of nearwall grid spacing on SST k-ωmodel using NREL Phase VI horizontal axis wind turbine[J].Journal of wind engineering&industrial aerodynamics,2012,107/108:94-105.
    [16]孙丰,汪建文,刘雄飞.风力机侧偏限速机构的机理分析及倾角优化[J].排灌机械工程学报,2017,35(2):152-157.SUN Feng,WANG Jianwen,LIU Xiongfei.Mechanism analysis and inclination optimization of the wind turbine side speed limit mechanism[J].Journal of drainage and irrigation machinery engineering,2017,35(2):152-157.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700