Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser
  • 作者:GRZEGORZ ; SOBON ; TADEUSZ ; MARTYNKIEN ; KAROL ; TARNOWSKI ; PAWE? ; MERGO ; JAROS?AW ; SOTOR
  • 英文作者:GRZEGORZ SOBON;TADEUSZ MARTYNKIEN;KAROL TARNOWSKI;PAWE? MERGO;JAROS?AW SOTOR;Laser & Fiber Electronics Group,Faculty of Electronics,Wroc? aw University of Science and Technology;Department of Optics and Photonics,Faculty of Fundamental Problems of Technology,Wroclaw University of Science and Technology;Laboratory of Optical Fiber Technology,Maria Curie-Sklodowska University;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:Laser & Fiber Electronics Group,Faculty of Electronics,Wroc? aw University of Science and Technology;Department of Optics and Photonics,Faculty of Fundamental Problems of Technology,Wroclaw University of Science and Technology;Laboratory of Optical Fiber Technology,Maria Curie-Sklodowska University;
  • 出版日期:2017-06-01
  • 出版单位:Photonics Research
  • 年:2017
  • 期:v.5
  • 基金:Narodowe Centrum Nauki(NCN)(2014/13/D/ST7/02090,2014/13/D/ST7/02143);; Wroc?aw University of Science and Technology(0401/0094/16)
  • 语种:英文;
  • 页:GZXJ201703002
  • 页数:5
  • CN:03
  • ISSN:31-2126/O4
  • 分类号:14-18
摘要
We report generation of sub-100 fs pulses tunable from 1700 to 2100 nm via Raman soliton self-frequency shift.The nonlinear shift occurs in a highly nonlinear fiber, which is pumped by an Er-doped fiber laser. The whole system is fully fiberized, without the use of any free-space optics. Thanks to its exceptional simplicity, the setup can be considered as an alternative to mode-locked Tm-and Ho-doped fiber lasers.
        We report generation of sub-100 fs pulses tunable from 1700 to 2100 nm via Raman soliton self-frequency shift.The nonlinear shift occurs in a highly nonlinear fiber, which is pumped by an Er-doped fiber laser. The whole system is fully fiberized, without the use of any free-space optics. Thanks to its exceptional simplicity, the setup can be considered as an alternative to mode-locked Tm-and Ho-doped fiber lasers.
引文
1 .C.W.Rudy,M.J.F.Digonnet,and R.L.Byer,“Advances in 2-μm Tm-doped mode-locked fiber lasers,”Opt.Fiber Technol.20,642–649(2014).
    2 .M.Klimczak,B.Siwicki,B.Zhou,M.Bache,D.Pysz,O.Bang,and R.Buczy′nski,“Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2μm in all-solid soft glass photonic crystal fibers,”Opt.Express 24,29406–29416(2016).
    3 .A.Khodabakhsh,V.Ramaiah-Badarla,L.Rutkowski,A.C.Johansson,K.F.Lee,J.Jiang,C.Mohr,M.E.Fermann,and A.Foltynowicz,“Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4μm,”Opt.Lett.41,2541–2544(2016).
    4 .N.Leindecker,A.Marandi,R.L.Byer,K.L.Vodopyanov,J.Jiang,I.Hartl,M.Fermann,and P.G.Schunemann,“Octave-spanning ultrafast OPO with 2.6–6.1μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,”Opt.Express 20,7046–7053(2012).
    5 .K.Scholle,S.Lamrini,P.Koopmann,and P.Fuhrberg,“2μm laser sources and their possible applications,”in Frontiers in Guided Wave Optics and Optoelectronics,B.Pal,ed.(In Tech,2010).
    6 .N.M.Fried and K.E.Murray,“High-power thulium fiber laser ablation of urinary tissues at 1.94μm,”J.Endourol.19,25–31(2005).
    7 .P.Li,A.Ruehl,U.Grosse-Wortmann,and I.Hartl,“Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at2 .06μm,”Opt.Lett.39,6859–6862(2014).
    8 .Y.Tang,A.Chong,and F.W.Wise,“Generation of 8 n J pulses from a normal-dispersion thulium fiber laser,”Opt.Lett.40,2361–2364(2015).
    9 .F.Haxsen,A.Ruehl,M.Engelbrecht,D.Wandt,U.Morgner,and D.Kracht,“Stretched-pulse operation of a thulium-doped fiber laser,”Opt.Express 16,20471–20476(2008).
    10 .G.Sobon,J.Sotor,I.Pasternak,A.Krajewska,W.Strupinski,and K.M.Abramski,“All-polarization maintaining,graphene-based femtosecond Tm-doped all-fiber laser,”Opt.Express 23,9339–9346(2015).
    11 .J.Sotor,M.Pawliszewska,G.Sobon,P.Kaczmarek,A.Przewolka,I.Pasternak,J.Cajzl,P.Peterka,P.Honzátko,I.Ka?ík,W.Strupinski,and K.Abramski,“All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,”Opt.Lett.41,2592–2595(2016).
    12 .J.Wang,X.Liang,G.Hu,Z.Zheng,S.Lin,D.Ouyang,X.Wu,P.Yan,S.Ruan,Z.Sun,and T.Hasan,“152 fs nanotube-mode-locked thulium-doped all-fiber laser,”Sci.Rep.6,28885(2016).
    13 .M.Engelbrecht,F.Haxsen,A.Ruehl,D.Wandt,and D.Kracht,“Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 n J,”Opt.Lett.33,690–692(2008).
    14 .G.Sobon,J.Sotor,T.Martynkien,and K.M.Abramski,“Ultrabroadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser,”Opt.Express 24,6156–6161(2016).
    15 .J.H.Lee,J.van Howe,C.Xu,and C.Liu,“Soliton self-frequency shift:experimental demonstrations and applications,”IEEE J.Sel.Top.Quantum Electron.14,713–723(2008).
    16 .Y.Tang,L.G.Wright,K.Charan,T.Wang,C.Xu,and F.W.Wise,“Generation of intense 100 fs solitons tunable from 2 to 4.3μm in fluoride fiber,”Optica 3,948–951(2016).
    17 .G.Krauss,D.Fehrenbacher,D.Brida,C.Riek,A.Sell,R.Huber,and A.Leitenstorfer,“All-passive phase locking of a compact Er:fiber laser system,”Opt.Lett.36,540–542(2011).
    18 .N.Nishizawa and T.Goto,“Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,”IEEE J.Sel.Top.Quantum Electron.7,518–524(2001).
    19 .M.Y.Koptev,E.A.Anashkina,A.V.Andrianov,V.V.Dorofeev,A.F.Kosolapov,S.V.Muravyev,and A.V.Kim,“Widely tunable midinfrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber,”Opt.Lett.40,4094–4097(2015).
    20 .E.A.Anashkina,A.V.Andrianov,M.Y.Koptev,V.M.Mashinsky,S.V.Muravyev,and A.V.Kim,“Generating tunable optical pulses over the ultrabroad range of 1.6–2.5μm in Ge O2-doped silica fibers with an Er:fiber laser source,”Opt.Express 20,27102–27107(2012).
    21 .J.Sotor and G.Sobon,“24 fs and 3 n J pulse generation from a simple,all polarization maintaining Er-doped fiber laser,”Laser Phys.Lett.13,125102(2016).
    22 .P.Hlubina,M.Kadulová,and D.Ciprian,“Spectral interferometrybased chromatic dispersion measurement of fibre including the zero-dispersion wavelength,”J.Eur.Opt.Soc.7,12017(2012).
    23 .J.C.Travers,M.H.Frosz,and J.M.Dudley,Supercontinuum Generation in Optical Fibers(Cambridge University,2010).
    24 .B.Kibler,J.M.Dudley,and S.Coen,“Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber:influence of the frequency-dependent effective mode area,”Appl.Phys.B81 ,337–342(2005).
    25 .T.Cheng,R.Usaki,Z.Duan,W.Gao,D.Deng,M.Liao,Y.Kanou,M.Matsumoto,T.Misumi,T.Suzuki,and Y.Ohishi,“Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5microstructured optical fiber,”Opt.Express 22,3740–3746(2014).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700