Coherent supercontinuum generation in soft glass photonic crystal fibers
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Coherent supercontinuum generation in soft glass photonic crystal fibers
  • 作者:MARIUSZ ; KLIMCZAK ; BART?OMIEJ ; SIWICKI ; ALEXANDER ; HEIDT ; RYSZARD ; BUCZY?SKI
  • 英文作者:MARIUSZ KLIMCZAK;BART?OMIEJ SIWICKI;ALEXANDER HEIDT;RYSZARD BUCZY?SKI;Glass Department, Institute of Electronic Materials Technology;Institute of Applied Physics, University of Bern;Faculty of Physics, University of Warsaw;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:Glass Department, Institute of Electronic Materials Technology;Institute of Applied Physics, University of Bern;Faculty of Physics, University of Warsaw;
  • 出版日期:2017-12-01
  • 出版单位:Photonics Research
  • 年:2017
  • 期:v.5
  • 基金:Funding.Fundacja na rzecz Nauki Polskiej(FNP)(First TEAM/2016-1/1)
  • 语种:英文;
  • 页:GZXJ201706035
  • 页数:18
  • CN:06
  • ISSN:31-2126/O4
  • 分类号:229-246
摘要
An overview of the progress on pulse-preserving, coherent, nonlinear fiber-based supercontinuum generation is presented. The context encompasses various wavelength ranges and pump sources, starting with silica photonic crystal fibers pumped with 1.0 μm femtosecond lasers up to chalcogenide step-index and microstructured fibers pumped from optical parametric amplifiers tuned to mid-infrared wavelengths. In particular, silica and silicatebased all-normal dispersion(ANDi) photonic crystal fibers have been demonstrated for pumping with femtosecond lasers operating at 1.56 μm with the recorded spectra covering 0.9–2.3 μm. This matches amplification bands of robust fiber amplifiers and femtosecond lasers. The review therefore focuses specifically on this wavelength range, discussing glass and nonlinear fiber designs, experimental results on supercontinuum generation up to the fundamental limit of oxide glass fiber transmission around 2.8 μm, and various limitations of supercontinuum bandwidth and coherence. Specifically, the role of nonlinear response against the role of dispersion profile shape is analyzed for two different soft glass ANDi fibers pumped at more than 2.0 μm. A spatio-temporal interaction of the fundamental fiber mode with modes propagating in the photonic lattice of the discussed ANDi fibers is shown to have positive effects on the coherence of the supercontinuum at pump pulse durations of 400 fs. Finally, the design and development of graded-index, nanostructured core optical fibers are discussed.In such structures the arbitrary shaping of the core refractive index profile could significantly improve the engineering flexibility of dispersion and effective mode area characteristics, and would be an interesting platform to further study the intermodal interaction mechanisms and their impact on supercontinuum coherence for subpicosecond laser pumped setups.
        An overview of the progress on pulse-preserving, coherent, nonlinear fiber-based supercontinuum generation is presented. The context encompasses various wavelength ranges and pump sources, starting with silica photonic crystal fibers pumped with 1.0 μm femtosecond lasers up to chalcogenide step-index and microstructured fibers pumped from optical parametric amplifiers tuned to mid-infrared wavelengths. In particular, silica and silicatebased all-normal dispersion(ANDi) photonic crystal fibers have been demonstrated for pumping with femtosecond lasers operating at 1.56 μm with the recorded spectra covering 0.9–2.3 μm. This matches amplification bands of robust fiber amplifiers and femtosecond lasers. The review therefore focuses specifically on this wavelength range, discussing glass and nonlinear fiber designs, experimental results on supercontinuum generation up to the fundamental limit of oxide glass fiber transmission around 2.8 μm, and various limitations of supercontinuum bandwidth and coherence. Specifically, the role of nonlinear response against the role of dispersion profile shape is analyzed for two different soft glass ANDi fibers pumped at more than 2.0 μm. A spatio-temporal interaction of the fundamental fiber mode with modes propagating in the photonic lattice of the discussed ANDi fibers is shown to have positive effects on the coherence of the supercontinuum at pump pulse durations of 400 fs. Finally, the design and development of graded-index, nanostructured core optical fibers are discussed.In such structures the arbitrary shaping of the core refractive index profile could significantly improve the engineering flexibility of dispersion and effective mode area characteristics, and would be an interesting platform to further study the intermodal interaction mechanisms and their impact on supercontinuum coherence for subpicosecond laser pumped setups.
引文
1.S.Ishida and N.Nishizawa,“Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,”Biomed.Opt.Express3,282-294(2012).
    2.Y.Takushima and K.Kikuchi,“10-GHz over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,”IEEE Photon.Technol.Lett.11,322-324(1999).
    3.Y.Sun,C.F.Booker,S.Kumari,R.N.Day,M.Davidson,and A.Periasamy,“Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,”J.Biomed.Opt.14,054009(2009).
    4.U.Sharma,E.W.Chang,and S.H.Yun,“Long-wavelength optical coherence tomography at 1.7μm for enhanced imaging depth,”Opt.Express 16,19712-19723(2008).
    5.H.Kawagoe,S.Ishida,M.Aramaki,Y.Sakakibara,E.Omoda,H.Kataura,and N.Nishizawa,“Development of a high power supercontinuum source in the 1.7μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography,”Biomed.Opt.Express 5,932-943(2014).
    6.C.S.Cheung,J.M.O.Daniel,M.Tokurakawa,W.A.Clarkson,and H.Liang,“High resolution Fourier domain optical coherence tomography in the 2μm wavelength range using a broadband supercontinuum source,”Opt.Express 23,1992-2001(2015).
    7.R.Wu,V.T.Company,D.E.Leaird,and A.M.Weiner,“Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,”Opt.Express 21,6045-6052(2013).
    8.C.-B.Huang,S.-G.Park,D.E.Leaird,and A.M.Weiner,“Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,”Opt.Express 16,2520-2527(2008).
    9.A.Sihvola,Electromagnetic Mixing Formulas and Applications(Institution of Electrical Engeneers,1999).
    10.R.R.Alfano and S.L.Shapiro,“Emission in the region 4000 to 7000?via four-photon coupling in glass,”Phys.Rev.Lett.24,584-587(1970).
    11.J.M.Dudley,G.Genty,and S.Coen,“Supercontinuum generation in photonic crystal fiber,”Rev.Mod.Phys.78,1135-1184(2006).
    12.J.K.Ranka,R.S.Windeler,and A.J.Stentz,“Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,”Opt.Lett.25,25-27(2000).
    13.J.M.Dudley and S.Coen,“Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,”Opt.Lett.27,1180-1182(2002).
    14.R.H.Stolen,J.P.Gordon,W.J.Tomlinson,and H.A.Haus,“Raman response function of silica-core fibers,”J.Opt.Soc.Am.B 6,1159-1166(1989).
    15.P.Domachuk,N.A.Wolchover,M.Cronin-Golomb,A.Wang,A.K.George,C.M.B.Cordeiro,J.C.Knight,and F.G.Omenetto,“Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,”Opt.Express 16,7161-7168(2008).
    16.C.Agger,C.Petersen,S.Dupont,H.Steffensen,J.K.Lyngs?,C.L.Thomsen,J.Th?gersen,S.R.Keiding,and O.Bang,“Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,”J.Opt.Soc.Am.B 29,635-645(2012).
    17.C.R.Petersen,U.M?ller,I.Kubat,B.Zhou,S.Dupont,J.Ramsay,T.Benson,S.Sujecki,N.Abdel-Moneim,Z.Tang,D.Furniss,A.Seddon,and O.Bang,“Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,”Nat.Photonics 8,830-834(2014).
    18.G.Sobon,M.Klimczak,J.Sotor,K.Krzempek,D.Pysz,R.Stepien,T.Martynkien,K.M.Abramski,and R.Buczynski,“Infrared supercontinuum generation in softglass photonic crystal fibers pumped at1560 nm,”Opt.Mat.Express 4,7-15(2014).
    19.M.Klimczak,B.Siwicki,P.Skibinski,D.Pysz,R.Stepien,A.Szolno,J.Pniewski,C.Radzewicz,and R.Buczynski,“Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,”Opt.Quantum Electron.46,563-571(2014).
    20.M.Klimczak,G.Stepniewski,H.Bookey,A.Szolno,R.Stepien,D.Pysz,A.Kar,A.Waddie,M.R.Taghizadeh,and R.Buczynski,“Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560 nm,”Opt.Lett.38,4679-4682(2013).
    21.G.P.Agrawal,Nonlinear Fiber Optics,3rd ed.(Academic,2001).
    22.T.Godin,Y.Combes,R.Ahmad,M.Rochette,T.Sylvestre,and J.M.Dudley,“Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires,”Opt.Lett.39,1885-1888(2014).
    23.U.M?ller and O.Bang,“Intensity noise in normal-pumped picoseconds supercontinuum generation,where higher-order Raman lines cross into the anomalous dispersion regime,”Electron.Lett.49,63-65(2013).
    24.S.R.Domingue and R.A.Bartels,“Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion,wave-breaking-extended nonlinear fiber supercontinuum generation,”Opt.Express 21,13305-13321(2013).
    25.Y.Liu,Y.Zhao,J.Lyngs?,S.You,W.L.Wilson,H.Tu,and S.A.Boppart,“Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation,”J.Lightwave Technol.33,1814-1820(2015).
    26.S.T.S?rensen,C.Larsen,U.M?ller,P.M.Moselund,C.L.Thomsen,and O.Bang,“The role of phase coherence in seeded supercontinuum generation,”Opt.Express 20,22886-22894(2012).
    27.D.M.Nguyen,T.Godin,S.Toenger,Y.Combes,B.Wetzel,T.Sylvestre,J.-M.Merolla,L.Larger,G.Genty,F.Dias,and J.M.Dudley,“Incoherent resonant seeding of modulation instability in optical fiber,”Opt.Lett.38,5338-5341(2013).
    28.Z.Ren,Y.Xu,Y.Qiu,K.K.Y.Wong,and K.Tsia,“Spectrally-resolved statistical characterization of seeded supercontinuum suppression using optical time-stretch,”Opt.Express 22,11849-11860(2014).
    29.P.Falk,M.H.Frosz,and O.Bang,“Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,”Opt.Express 13,7535-7540(2005).
    30.F.Li,Q.Li,J.Yuan,and P.K.A.Wai,“Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression,”Opt.Express 22,27339-27354(2014).
    31.L.E.Hooper,P.J.Mosley,A.C.Muir,W.J.Wadsworth,and J.C.Knight,“Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,”Opt.Express 19,4902-4907(2011).
    32.A.M.Heidt,A.Hartung,G.W.Bosman,P.Krok,E.G.Rohwer,H.Schwoerer,and H.Bartelt,“Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,”Opt.Express 19,3775-3787(2011).
    33.N.Nishizawa and J.Takayanagi,“Octave spanning high-quality supercontinuum generation in all-fiber system,”J.Opt.Soc.Am.B24,1786-1792(2007).
    34.K.Chow,Y.Takushima,C.Lin,C.Shu,and A.Bjarklev,“Flat supercontinuum generation based on normal dispersion nonlinear photonic crystal fiber,”Electron.Lett.42,989-990(2006).
    35.M.Klimczak,B.Siwicki,B.Zhou,M.Bache,D.Pysz,O.Bang,and R.Buczy′nski,“Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2μm in all-solid soft glass photonic crystal fibers,”Opt.Express 24,29406-29416(2016).
    36.K.Tarnowski,T.Martynkien,P.Mergo,K.Poturaj,G.Sobo′n,and W.Urba′nczyk,“Coherent supercontinuum generation up to 2.2μm in an all-normal dispersion microstructured silica fiber,”Opt.Express 24,30523-30536(2016).
    37.S.Kedenburg,T.Steinle,F.M?rz,A.Steinmann,and H.Giessen,“High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,”Opt.Lett.40,2668-2671(2015).
    38.X.Li,W.Chen,T.Xue,J.Gao,W.Gao,L.Hu,and M.Liao,“Low threshold mid-infrared supercontinuum generation in short fluoridechalcogenide multimaterial fibers,”Opt.Express 22,24179-24191(2014).
    39.L.Liu,T.Cheng,K.Nagasaka,H.Tong,G.Qin,T.Suzuki,and Y.Ohishi,“Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,”Opt.Lett.41,392-395(2016).
    40.A.R.Johnson,A.S.Mayer,A.Klenner,K.Luke,E.S.Lamb,M.R.E.Lamont,C.Joshi,Y.Okawachi,F.W.Wise,M.Lipson,U.Keller,and A.L.Gaeta,“Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,”Opt.Lett.40,5117-5120(2015).
    41.R.Salem,Z.Jiang,D.Liu,R.Pafchek,D.Gardner,P.Foy,M.Saad,D.Jenkins,A.Cable,and P.Fendel,“Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2μm,”Opt.Express 23,30592-30602(2015).
    42.A.M.Heidt,J.Rothhardt,A.Hartung,H.Bartelt,E.G.Rohwer,J.Limpert,and A.Tünnermann,“High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,”Opt.Express 19,13873-13879(2011).
    43.S.Demmler,J.Rothhardt,A.M.Heidt,A.Hartung,E.G.Rohwer,H.Bartelt,J.Limpert,and A.Tünnermann,“Generation of high quality,1.3 cycle pulses by active phase control of an octave spanning supercontinuum,”Opt.Express 19,20151-20158(2011).
    44.J.Rothhardt,S.Demmler,S.H?drich,J.Limpert,and A.Tünnermann,“Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,”Opt.Express 20,10870-10878(2012).
    45.M.Cassataro,D.Novoa,M.C.Günendi,N.N.Edavalath,M.H.Frosz,J.C.Travers,and P.St.J.Russell,“Generation of broadband mid-IRand UV light in gas-filled single-ring hollow-core PCF,”Opt.Express25,7637-7644(2017).
    46.S.Kedenburg,T.Gissibl,T.Steinle,A.Steinmann,and H.Giessen,“Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4μm range,”Opt.Express 23,8281-8289(2015).
    47.X.Feng,T.M.Monro,P.Petropoulos,V.Finazzi,and D.Hewak,“Solid microstructured optical fiber,”Opt.Express 11,2225-2230(2003).
    48.R.Buczy′nski,J.Pniewski,D.Pysz,R.St?pie′n,R.Kasztelanic,I.Kujawa,A.Filipkowski,A.J.Waddie,and M.R.Taghizadeh,“Dispersion management in soft glass all-solid photonic crystal fibres,”Optoelectron.Rev.20,207-215(2012).
    49.D.Lorenc,M.Aranyosiova,R.Buczynski,R.Stepien,I.Bugar,A.Vincze,and D.Velic,“Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,”Appl.Phys.B 93,531-538(2008).
    50.V.L.Kalashnikov,E.Sorokin,and I.T.Sorokina,“Raman effects in the infrared supercontinuum generation in soft-glass PCFs,”Appl.Phys.B 87,37-44(2007).
    51.A.M.Heidt,“Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,”J.Opt.Soc.Am.B 27,550-559(2010).
    52.A.M.Heidt,A.Hartung,and H.Bartelt,“Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,”in The Supercontinuum Laser Source,R.Alfano,ed.(Springer,2016),pp.247-280.
    53.G.Stepniewski,M.Klimczak,H.Bookey,B.Siwicki,D.Pysz,R.Stepien,A.K.Kar,A.J.Waddie,M.R.Taghizadeh,and R.Buczynski,“Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,”Laser Phys.Lett.11,055103(2014).
    54.M.Klimczak,B.Siwicki,P.Skibi′nski,D.Pysz,R.St?pie′n,A.Heidt,C.Radzewicz,and R.Buczy′nski,“Coherent supercontinuum generation up to 2.3μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,”Opt.Express 22,18824-18832(2014).
    55.T.Cheng,K.Nagasaka,T.H.Tuan,X.Xue,M.Matsumoto,H.Tezuka,T.Suzuki,and Y.Ohishi,“Mid-infrared supercontinuum generation spanning 2.0 to 15.1μm in a chalcogenide step-index fiber,”Opt.Lett.41,2117-2120(2016).
    56.O.Mouawad,P.Béjot,F.Billard,P.Mathey,B.Kibler,F.Désévédavy,G.Gadret,J.-C.Jules,O.Faucher,and F.Smektala,“Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-Scounterpart chalcogenide glasses,”Appl.Phys.B 121,433-438(2015).
    57.T.Cheng,W.Gao,M.Liao,Z.Duan,D.Deng,M.Matsumoto,T.Misumi,T.Suzuki,and Y.Ohishi,“Tunable third-harmonic generation in a chalcogenide-tellurite hybrid optical fiber with high refractive index difference,”Opt.Lett.39,1005-1007(2014).
    58.M.Liao,W.Gao,T.Cheng,Z.Duan,X.Xue,T.Suzuki,and Y.Ohishi,“Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,”Opt.Express 20,B574-B580(2012).
    59.J.Picot-Clemente,C.Strutynski,F.Amrani,F.Désévédavy,J.-C.Jules,G.Gadret,D.Deng,T.Cheng,K.Nagasaka,Y.Ohishi,B.Kibler,and F.Smektala,“Enhanced supercontinuum generation in tapered tellurite suspended core fiber,”Opt.Commun.354,374-379(2015).
    60.C.Strutynski,P.Froidevaux,F.Désévédavy,J.-C.Jules,G.Gadret,A.Bendahmane,K.Tarnowski,B.Kibler,and F.Smektala,“Tailoring supercontinuum generation beyond 2μm in step-index tellurite fibers,”Opt.Lett.42,247-250(2017).
    61.S.Kedenburg,C.Strutynski,B.Kibler,P.Froidevaux,F.Désévédavy,G.Gadret,J.-C.Jules,T.Steinle,F.Morz,A.Steinmann,H.Giessen,and F.Smektala,“High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3μm in robust step-index tellurite fibers,”J.Opt.Soc.Am.B 34,601-607(2017).
    62.T.H.Tuan,T.Cheng,K.Asano,Z.Duan,W.Gao,D.Deng,T.Suzuki,and Y.Ohishi,“Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zerodispersion wavelengths,”Opt.Express 21,20303-20312(2013).
    63.C.Strutynski,F.Desevedavy,A.Lemière,J.-C.Jules,G.Gadret,T.Cardinal,F.Smektala,and S.Danto,“Tellurite-based core-clad dualelectrodes composite fibers,”Opt.Mater.Express 7,1503-1508(2017).
    64.C.Xia,M.Kumar,O.P.Kulkarni,M.N.Islam,F.L.Terry,Jr.,M.J.Freeman,M.Poulain,and G.Maze,“Mid-infrared supercontinuum generation to 4.5μm in ZBLAN fluoride fibers by nanosecond diode pumping,”Opt.Lett.31,2553-2555(2006).
    65.A.M.Heidt,J.H.V.Price,C.Baskiotis,J.S.Feehan,Z.Li,S.U.Alam,and D.J.Richardson,“Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2μm,”Opt.Express21,24281-24287(2013).
    66.X.Jiang,N.Y.Joly,M.A.Finger,F.Babic,G.K.L.Wong,J.C.Travers,and P.St.J.Russell,“Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,”Nat.Photonics 9,133-139(2015).
    67.NKT Photonics,http://www.nktphotonics.com;LEUKOS,http://www.leukos-systems.com,Le Verre Fluoré,http://leverrefluore.com/,Thorlabs,http://www.thorlabs.com.
    68.A.Hartung,A.M.Heidt,and H.Bartelt,“Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,”Opt.Express 19,12275-12283(2011).
    69.H.Sotobayashi and K.Kitayama,“325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique,”Electron.Lett.34,1336-1337(1998).
    70.I.A.Sukhoivanov,S.O.Iakushev,O.V.Shulika,E.Silvestre,and M.V.Andres,“Design of all-normal dispersion microstructured optical fiber on silica platform for generation of pulse-preserving supercontinuum under excitation at 1550 nm,”J.Lightwave Technol.35,3772-3779(2017).
    71.C.C.Wang,M.H.Wang,and J.Wu,“Heavily germanium-doped silica fiber with a fat normal dispersion profile,”IEEE Photon.J.7,7101110(2015).
    72.K.Tarnowski and W.Urbanczyk,“All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared,”IEEE Photon.J.8,7100311(2016).
    73.A.M.Heidt,Z.Li,and D.J.Richardson,“High power diode-seeded fiber amplifiers at 2μm-from architectures to applications,”IEEE J.Sel.Top.Quantum Electron.20,3100612(2014).
    74.J.Sotor,G.Sobon,M.Kowalczyk,W.Macherzynski,P.Paletko,and K.M.Abramski,“Ultrafast thulium-doped fiber laser mode locked with black phosphorus,”Opt.Lett.40,3885-3888(2015).
    75.H.Tu,Y.Liu,X.Liu,D.Turchinovich,J.L?gsgaard,and S.A.Boppart,“Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber:toward a practical coherent fiber supercontinuum laser,”Opt.Express 20,1113-1128(2012).
    76.T.Martynkien,D.Pysz,R.St?pie′n,and R.Buczy′nski,“All-solid microstructured fiber with flat normal chromatic dispersion,”Opt.Lett.39,2342-2345(2014).
    77.M.Klimczak,G.Sobo′n,K.M.Abramski,and R.Buczy′nski,“Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,”Opt.Express 22,31635-31645(2014).
    78.M.Klimczak,G.Sobo′n,R.Kasztelanic,K.M.Abramski,and R.Buczy′nski,“Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,”Sci.Rep.6,19284(2016).
    79.J.Sotor,M.Pawliszewska,G.Sobon,P.Kaczmarek,A.Przewolka,I.Pasternak,J.Cajzl,P.Peterka,P.Honzátko,I.Ka?ík,W.Strupinski,and K.M.Abramski,“All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber,”Opt.Lett.41,2592-2595(2016).
    80.Q.Wang,J.Geng,Z.Jiang,T.Luo,and S.Jiang,“Mode-locked Tm-Ho-codoped fiber laser at 2.06μm,”IEEE Photon.Technol.Lett.23,682-684(2011).
    81.B.Siwicki,R.Kasztelanic,M.Klimczak,J.Cimek,D.Pysz,R.St?pie′n,and R.Buczy′nski,“Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,”J.Opt.18,065102(2016).
    82.A.M.Heidt,J.S.Feehan,J.H.V.Price,and T.Feurer,“Limits of coherent supercontinuum generation in normal dispersion fibers,”J.Opt.Soc.Am.B 34,764-775(2017).
    83.J.M.Dudley and J.R.Taylor,eds.,Supercontinuum Generation in Optical Fibers(Cambridge,2010).
    84.S.Coen,A.H.L.Chau,R.Leonhardt,J.D.Harvey,J.C.Knight,W.J.Wadsworth,and P.St.J.Russell,“Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,”J.Opt.Soc.Am.B 19,753-764(2002).
    85.G.Sobon,“Mode-locking of fiber lasers using novel two-dimensional nanomaterials:graphene and topological insulators,”Photon.Res.3,A56-A63(2015).
    86.K.Goda and B.Jalali,“Dispersive Fourier transformation for fast continuous single-shot measurements,”Nat.Photonics 7,102-112(2013).
    87.B.Wetzel,A.Stefani,L.Larger,P.A.Lacourt,J.M.Merolla,T.Sylvestre,A.Kudlinski,A.Mussot,G.Genty,F.Dias,and J.M.Dudley,“Real-time full bandwidth measurement of spectral noise in supercontinuum generation,”Sci.Rep.2,882(2012).
    88.T.Godin,B.Wetzel,T.Sylvestre,L.Larger,A.Kudlinski,A.Mussot,A.Ben Salem,M.Zghal,G.Genty,F.Dias,and J.M.Dudley,“Real time noise and wavelength correlations in octave-spanning supercontinuum generation,”Opt.Express 21,18452-18460(2013).
    89.F.Poletti and P.Horak,“Description of ultrashort pulse propagation in multimode optical fibers,”J.Opt.Soc.Am.B 25,1645-1654(2008).
    90.F.Poletti and P.Horak,“Dynamics of femtosecond supercontinuum generation in multimode fibers,”Opt.Express 17,6134-6147(2009).
    91.R.Khakimov,I.Shavrin,S.Novotny,M.Kaivola,and H.Ludvigsen,“Numerical solver for supercontinuum generation in multimode optical fibers,”Opt.Express 21,14388-14398(2013).
    92.A.Aalto,G.Genty,and J.Toivonen,“Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering,”Opt.Express 18,1234-1239(2010).
    93.R.Buczy′nski,M.Klimczak,T.Stefaniuk,R.Kasztelanic,B.Siwicki,G.St?pniewski,J.Cimek,D.Pysz,and R.St?pie′n,“Optical fibers with gradient index nanostructured core,”Opt.Express 23,25588-25596(2015).
    94.K.Krupa,A.Tonello,B.M.Shalaby,M.Fabert,A.Barthélémy,G.Millot,S.Wabnitz,and V.Couderc,“Spatial beam self-cleaning in multimode fibres,”Nat.Photonics 11,237-241(2017).
    95.C.R.Petersen,P.M.Moselund,C.Petersen,U.M?ller,and O.Bang,“Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,”Opt.Express 24,749-758(2016).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700