Ultra-high-resolution detection of Pb~(2+) ions using a black phosphorus functionalized microfiber coil resonator
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultra-high-resolution detection of Pb~(2+) ions using a black phosphorus functionalized microfiber coil resonator
  • 作者:YU ; YIN ; SHI ; LI ; SHUNBIN ; WANG ; SHIJIE ; JIA ; JING ; REN ; GERALD ; FARRELL ; ELFED ; LEWIS ; PENGFEI ; WANG
  • 英文作者:YU YIN;SHI LI;SHUNBIN WANG;SHIJIE JIA;JING REN;GERALD FARRELL;ELFED LEWIS;PENGFEI WANG;Key Laboratory of In-Fibre Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University;Photonics Research Centre, Technological University Dublin;Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick;Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:Key Laboratory of In-Fibre Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University;Photonics Research Centre, Technological University Dublin;Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick;Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University;
  • 出版日期:2019-06-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:National Key R&D Program of China(2016YFE0126500);; National Natural Science Foundation of China(NSFC)(61575050);; Fundamental Research Funds for the Central Universities(HEUCFG201841);; Key Program for Natural Science Foundation of Heilongjiang Province of China(ZD2016012);; Open Fund of the State Key Laboratory on Integrated Optoelectronics(IOSKL2016KF03);; 111 Project to the Harbin Engineering University(B13015)
  • 语种:英文;
  • 页:GZXJ201906007
  • 页数:8
  • CN:06
  • ISSN:31-2126/O4
  • 分类号:57-64
摘要
A black phosphorus(BP) functionalized optical fiber sensor based on a microfiber coil resonator(MCR) for Pb~(2+) ion detection in an aquatic environment is presented and experimentally demonstrated. The MCR-BP sensor is manufactured by winding a tapered microfiber on a hollow rod composed of a low-refractive-index polycarbonate(PC) resin with the BP deposited on the internal wall of the rod. Based on the propagation properties of the MCR, the chemical interaction between the Pb~(2+) ions and the BP alters the refractive index of the ambient environment and thus results in a detectable shift in the transmission spectrum. The resonance wavelength moves towards longer wavelengths with an increasing concentration of Pb~(2+) ions, and the sensor has an ultra-high detection resolution of 0.0285 ppb(parts per billion). The temperature dependence is 106.95 pm/°C due to the strong thermo-optic and thermal-expansion effect of the low-refractive-index PC resin. In addition, the sensor shows good stability over a period of 15 days. The local pH also influences the sensor, with the resonance wavelength shift increasing as pH approaches a value of 7 but then decreasing as the pH value increases further due to the effect of the BP layer by H~+ and OH~-ions. The sensor shows the potential for high-resolution detection of Pb~(2+) ions in a liquid environment with the particular advantages of having a simple structure, ease of fabrication,low cost, low loss, and simple interrogation.
        A black phosphorus(BP) functionalized optical fiber sensor based on a microfiber coil resonator(MCR) for Pb~(2+) ion detection in an aquatic environment is presented and experimentally demonstrated. The MCR-BP sensor is manufactured by winding a tapered microfiber on a hollow rod composed of a low-refractive-index polycarbonate(PC) resin with the BP deposited on the internal wall of the rod. Based on the propagation properties of the MCR, the chemical interaction between the Pb~(2+) ions and the BP alters the refractive index of the ambient environment and thus results in a detectable shift in the transmission spectrum. The resonance wavelength moves towards longer wavelengths with an increasing concentration of Pb~(2+) ions, and the sensor has an ultra-high detection resolution of 0.0285 ppb(parts per billion). The temperature dependence is 106.95 pm/°C due to the strong thermo-optic and thermal-expansion effect of the low-refractive-index PC resin. In addition, the sensor shows good stability over a period of 15 days. The local pH also influences the sensor, with the resonance wavelength shift increasing as pH approaches a value of 7 but then decreasing as the pH value increases further due to the effect of the BP layer by H~+ and OH~-ions. The sensor shows the potential for high-resolution detection of Pb~(2+) ions in a liquid environment with the particular advantages of having a simple structure, ease of fabrication,low cost, low loss, and simple interrogation.
引文
1.S.Thatai,P.Khurana,S.Prasad,S.K.Soni,and D.Kumar,“Trace colorimetric detection of Pb2+using plasmonic gold nanoparticles and silica-gold nanocomposites,”Microchem.J.124,104-110(2016).
    2.K.Jomova and M.Morovi?,“Effect of heavy metal treatment on molecular changes in root tips of Lupinus luteus L,”Czech J.Food Sci.27,S386-S389(2009).
    3.B.Cheng,L.Zhou,L.Lu,J.Liu,X.Dong,F.Xi,and P.Chen,“Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels,”Sens.Actuators B 259,364-371(2018).
    4.H.Sun,L.Yu,H.Chen,J.Xiang,X.Zhang,Y.Shi,Q.Yang,A.Guan,Q.Li,and Y.Tang,“A colorimetric lead(II)ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye,”Talanta 136,210-214(2015).
    5.Y.Lu,X.Li,G.Wang,and W.Tang,“A highly sensitive and selective optical sensor for Pb2+by using conjugated polymers and label-free oligonucleotides,”Biosens.Bioelectron.39,231-235(2013).
    6.C.Hou,Y.Xiong,N.Fu,C.C.Jacquot,T.C.Squier,and H.Cao,“Turn-on ratiometric fluorescent sensor for Pb2+detection,”Tetrahedron Lett.52,2692-2696(2011).
    7.R.Sedghi,S.Kazemi,and B.Heidari,“Novel selective and sensitive dual colorimetric sensor for mercury and lead ions derived from dithizone-polymeric nanocomposite hybrid,”Sens.Actuators B 245,860-867(2017).
    8.P.T.Martinhon,J.Carre?o,C.R.Sousa,O.E.Barcia,and O.R.Mattos,“Electrochemical impedance spectroscopy of lead(II)ionselective solid-state membranes,”Electrochim.Acta 51,3022-3028(2006).
    9.F.M.Pereira,D.M.Brum,F.G.Lepri,and R.J.Cassella,“Extraction induced by emulsion breaking as a tool for Ca and Mg determination in biodiesel by fast sequential flame atomic absorption spectrometry(FS-FAAS)using Co as internal standard,”Microchem.J.117,172-177(2014).
    10.A.Kumar,A.R.Chowdhuri,D.Laha,T.K.Mahto,P.Karmakar,and S.K.Sahu,“Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ions and live cell imaging,”Sens.Actuators B 242,679-686(2017).
    11.P.Wang,G.Brambilla,M.Ding,Y.Semenova,Q.Wu,and G.Farrell,“High-sensitivity,evanescent field refractometric sensor based on a tapered,multimode fiber interference,”Opt.Lett.36,2233-2235(2011).
    12.A.Urrutia,J.Goicoechea,and F.J.Arregui,“Optical fiber sensors based on nanoparticle-embedded coatings,”J.Sens.2015,805053(2015).
    13.Y.Cao,X.Wang,T.Guo,Y.Ran,X.Feng,B.-O.Guan,and J.Yao,“High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation,”Sens.Actuators B 245,583-589(2017).
    14.S.P.Usha,S.K.Mishra,and B.D.Gupta,“Fabrication and characterization of a SPR based fiber optic sensor for the detection of chlorine gas using silver and zinc oxide,”Materials 8,2204-2216(2015).
    15.Y.Wu,Y.-J.Rao,Y.-H.Chen,and Y.Gong,“Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,”Opt.Express 17,18142-18147(2009).
    16.S.Bagchi,R.Achla,and S.K.Mondal,“Electrospun polypyrrolepolyethylene oxide coated optical fiber sensor probe for detection of volatile compounds,”Sens.Actuators B 250,52-60(2017).
    17.R.Raghunandhan,L.Chen,H.Long,L.Leam,P.So,X.Ning,and C.Chan,“Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,”Sens.Actuators B 233,31-38(2016).
    18.G.Brambilla,F.Xu,P.Horak,Y.Jung,F.Koizumi,N.P.Sessions,E.Koukharenko,X.Feng,G.S.Murugan,and J.S.Wilkinson,“Optical fiber nanowires and microwires:fabrication and applications,”Adv.Opt.Photon.1,107-161(2009).
    19.I.Hernández-Romano,D.Monzón-Hernández,C.MorenoHernández,D.Moreno-Hernandez,and J.Villatoro,“Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,”IEEE Photon.Technol.Lett.27,2591-2594(2015).
    20.B.Jiang,M.Xue,C.Zhao,D.Mao,K.Zhou,L.Zhang,and J.Zhao,“Refractometer probe based on a reflective carbon nanotube-modified microfiber Bragg grating,”Appl.Opt.55,7037-7041(2016).
    21.P.Wang,M.Ding,G.Brambilla,Y.Semenova,Q.Wu,and G.Farrell,“High temperature performance of an optical microfibre coupler and its potential use as a sensor,”Electron.Lett.48,283-284(2012).
    22.R.Wang and X.Qiao,“Intrinsic Fabry-Perot interferometeric sensor based on microfiber created by chemical etching,”Sensors 14,16808-16815(2014).
    23.Y.Ren,R.Zhang,C.Ti,and Y.Liu,“Tapered optical fiber loops and helices for integrated photonic device characterization and microfluidic roller coasters,”Optica 3,1205-1208(2016).
    24.Z.Xu,Q.Sun,B.Li,Y.Luo,W.Lu,D.Liu,P.P.Shum,and L.Zhang,“Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,”Opt.Express 23,6662-6672(2015).
    25.C.-J.Ma,L.-Y.Ren,Y.-P.Xu,Y.-L.Wang,H.Zhou,H.-W.Fu,and J.Wen,“Theoretical and experimental study of structural slow light in a microfiber coil resonator,”Appl.Opt.54,5619-5623(2015).
    26.Y.Yin,J.Yu,Y.Jiang,S.Li,J.Ren,G.Farrell,E.Lewis,and P.Wang,“Investigation of temperature dependence of microfiber coil resonators,”J.Lightwave Technol.36,4887-4893(2018).
    27.F.Xu and G.Brambilla,“Demonstration of a refractometric sensor based on optical microfiber coil resonator,”Appl.Phys.Lett.92,101126(2008).
    28.Y.Yin,S.Li,J.Ren,G.Farrell,E.Lewis,and P.Wang,“High-sensitivity salinity sensor based on optical microfiber coil resonator,”Opt.Express 26,34633-34640(2018).
    29.S.-C.Yan,B.-C.Zheng,J.-H.Chen,F.Xu,and Y.-Q.Lu,“Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,”Appl.Phys.Lett.107,053502(2015).
    30.A.K.Geim,“Graphene:status and prospects,”Science 324,1530-1534(2009).
    31.W.Lei,D.Portehault,R.Dimova,and M.Antonietti,“Boron carbon nitride nanostructures from salt melts:tunable water-soluble phosphors,”J.Am.Chem.Soc.133,7121-7127(2011).
    32.Q.H.Wang,K.Kalantar-Zadeh,A.Kis,J.N.Coleman,and M.S.Strano,“Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,”Nat.Nanotechnol.7,699-712(2012).
    33.F.Xia,H.Wang,and Y.Jia,“Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,”Nat.Commun.5,4458(2014).
    34.Y.Wang,F.Zhang,X.Tang,X.Chen,Y.Chen,W.Huang,Z.Liang,L.Wu,Y.Ge,and Y.Song,“All-optical phosphorene phase modulator with enhanced stability under ambient conditions,”Laser Photon.Rev.12,1800016(2018).
    35.Z.Guo,S.Chen,Z.Wang,Z.Yang,F.Liu,Y.Xu,J.Wang,Y.Yi,H.Zhang,and L.Liao,“Metal-ion-modified black phosphorus with enhanced stability and transistor performance,”Adv.Mater.29,1703811(2017).
    36.N.Michael,K.Murat,P.Volker,L.Jun,N.Junjie,H.Min,H.Lars,G.Yury,and M.W.Barsoum,“Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2,”Adv.Mater.23,4248-4253(2011).
    37.Z.-S.Wu,G.Zhou,L.-C.Yin,W.Ren,F.Li,and H.-M.Cheng,“Graphene/metal oxide composite electrode materials for energy storage,”Nano Energy 1,107-131(2012).
    38.Q.Bao,H.Zhang,Y.Wang,Z.Ni,Y.Yan,Z.X.Shen,K.P.Loh,and D.Y.Tang,“Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,”Adv.Funct.Mater.19,3077-3083(2009).
    39.J.D.Fowler,M.J.Allen,V.C.Tung,Y.Yang,R.B.Kaner,and B.H.Weiller,“Practical chemical sensors from chemically derived graphene,”ACS Nano 3,301-306(2009).
    40.L.Li,Y.Yu,G.J.Ye,Q.Ge,X.Ou,H.Wu,D.Feng,X.H.Chen,and Y.Zhang,“Black phosphorus field-effect transistors,”Nat.Nanotechnol.9,372-377(2014).
    41.S.C.Dhanabalan,J.S.Ponraj,Z.Guo,S.Li,Q.Bao,and H.Zhang,“Emerging trends in phosphorene fabrication towards next generation devices,”Adv.Sci.4,1600305(2017).
    42.M.Qiu,W.X.Ren,T.Jeong,M.Won,G.Y.Park,D.K.Sang,L.-P.Liu,H.Zhang,and J.S.Kim,“Omnipotent phosphorene:a nextgeneration,two-dimensional nanoplatform for multidisciplinary biomedical applications,”Chem.Soc.Rev.47,5588-5601(2018).
    43.A.Castellanos-Gomez,“Black phosphorus:narrow gap,wide applications,”J.Phys.Chem.Lett.6,4280-4291(2015).
    44.S.Y.Cho,Y.Lee,H.J.Koh,H.Jung,J.S.Kim,H.W.Yoo,J.Kim,and H.T.Jung,“Superior chemical sensing performance of black phosphorus:comparison with MoS2and graphene,”Adv.Mater.28,7020-7028(2016).
    45.R.Zhang,Y.Zhang,H.Yu,H.Zhang,R.Yang,B.Yang,Z.Liu,and J.Wang,“Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared,”Adv.Opt.Mater.3,1787-1792(2015).
    46.M.Buscema,D.J.Groenendijk,S.I.Blanter,G.A.Steele,H.S.Van Der Zant,and A.Castellanos-Gomez,“Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,”Nano Lett.14,3347-3352(2014).
    47.N.Youngblood,C.Chen,S.J.Koester,and M.Li,“Waveguideintegrated black phosphorus photodetector with high responsivity and low dark current,”Nat.Photonics 9,247-252(2015).
    48.A.N.Abbas,B.Liu,L.Chen,Y.Ma,S.Cong,N.Aroonyadet,M.K?pf,T.Nilges,and C.Zhou,“Black phosphorus gas sensors,”ACS Nano9,5618-5624(2015).
    49.J.Shao,H.Xie,H.Huang,Z.Li,Z.Sun,Y.Xu,Q.Xiao,X.-F.Yu,Y.Zhao,and H.Zhang,“Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,”Nat.Commun.7,12967(2016).
    50.B.S.Boruah and R.Biswas,“Localized surface plasmon resonance based U-shaped optical fiber probe for the detection of Pb2+in aqueous medium,”Sens.Actuators B 276,89-94(2018).
    51.M.Sumetsky,“Optical fiber microcoil resonator,”Opt.Express 12,2303-2316(2004).
    52.J.Kim,S.S.Baik,S.H.Ryu,Y.Sohn,S.Park,B.-G.Park,J.Denlinger,Y.Yi,H.J.Choi,and K.S.Kim,“Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus,”Science 349,723-726(2015).
    53.C.Liu,Z.Sun,L.Zhang,J.Lv,X.Yu,and X.Chen,“Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing,”Sens.Actuators B 257,1093-1098(2018).
    54.Y.-C.Chang and D.-H.Chen,“Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4magnetic nanoparticles for removal of Cu(II)ions,”J.Colloid Interface Sci.283,446-451(2005).
    55.N.Promphet,P.Rattanarat,R.Rangkupan,O.Chailapakul,and N.Rodthongkum,“An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium,”Sens.Actuators B 207,526-534(2015).
    56.M.á.G.Rico,M.Olivares-Marín,and E.P.Gil,“Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn(II),Cd(II)and Pb(II),”Talanta 80,631-635(2009).
    57.G.Liu,J.Chen,X.Hou,and W.Huang,“A highly-sensitive electrochemical sensor for the simultaneous detection of Cd2+and Pb2+using liquid phase-exfoliated graphene,”Anal.Methods 6,5760-5765(2014).
    58.P.Niu,C.Fernández-Sánchez,M.Gich,C.Ayora,and A.Roig,“Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes,”Electrochim.Acta 165,155-161(2015).
    59.H.Liu,H.Liu,G.Peng,and P.Chu,“Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings,”Opt.Commun.219,139-142(2003).
    60.Y.-N.Zhang,L.Zhang,B.Han,P.Gao,Q.Wu,and A.Zhang,“Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating,”Sens.Actuators B 272,331-339(2018).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700