燃煤电厂烟气MDEA/PZ混合胺法碳捕集工艺模拟分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant
  • 作者:林海周 ; 罗海中 ; 裴爱国 ; 方梦祥
  • 英文作者:LIN Haizhou;LUO Haizhong;PEI Aiguo;FANG Mengxiang;China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd.;State Key Laboratory of Clean Energy Utilization, Zhejiang University;
  • 关键词:燃煤电厂 ; 二氧化碳捕集 ; 混合胺 ; 过程模拟 ; 能耗 ; 驱动力
  • 英文关键词:coal-fired power plant;;carbon dioxide capture;;amine blends;;process simulation;;energy cost;;driving force
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国能源建设集团广东省电力设计研究院有限公司;浙江大学能源清洁利用国家重点实验室;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:广东省自然科学基金博士启动项目(2018A030310692);; 中国能源建设集团广东省电力设计研究院博士后科研项目(EV04531W)
  • 语种:中文;
  • 页:HGJZ201904053
  • 页数:10
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:457-466
摘要
采用混合胺吸收剂替代传统一乙醇胺(MEA)吸收剂是降低有机胺法碳捕集工艺能耗的重要方法。利用Aspen plus软件模拟了以甲基二乙醇胺(MDEA)/哌嗪(PZ)混合胺为吸收剂的燃煤电厂每年百万吨CO_2捕集工艺系统,考察了贫液负荷、MDEA/PZ混合胺浓度、MDEA/PZ比例和解吸压力等因素对解吸塔再沸器热负荷和冷凝器冷负荷的影响。通过对这些影响因素下吸收塔内液相温度分布和CO_2负荷分布变化揭示了MDEA/PZ对CO_2的吸收特性。此外,进一步分析了不同影响因素下解吸塔内气液相CO_2浓度驱动力和气液相级间温度驱动力分布特性,发现了强浓度驱动力和低温度驱动力分布更有利于降低再生能耗。研究表明,由30%MDEA和20%PZ组成的混合胺液在贫液负荷为0.08和解吸压力为2.02×105Pa时,再沸器热负荷和塔顶冷凝负荷分别为2.76GJ/tCO_2和0.60GJ/tCO_2,相比传统MEA吸收剂降低了20.92%和40.0%。
        Amine blend is recognized as a promising alternative to traditional MEA solution for reducing the energy cost of post-combustion chemical absorption CO_2 capture process. In this study, a coal-fired power plant CO_2 capture system using the blend of methyldiethanolamine(MDEA) and piperazine(PZ) as an absorbent was simulated by Aspen plus soft at a capacity of 1 million tons CO_2 one year. The effects of MDEA/PZ blend concentration, MDEA/PZ ratio, CO_2 load in lean solution and stripping pressure on the stripper reboiler heat duty and condenser cool duty were investigated. The liquid phase temperature and CO_2 load of the solution in the absorber under different conditions were analyzed to reveal the absorbing properties of MDEA/PZ blend. The CO_2 concentration driving force and temperature driving force for the stripping process were also studied. The results showed that strong concentration driving force and weak temperature driving force favored the decrease of energy cost. The heat duty and cold duty for CO_2 regeneration in stripper can be as low as 2.76 GJ/tCO_2 and 0.60 GJ/tCO_2, respectively under optimized conditions(30% MDEA and 20% PZ, 0.08 lean load, 2.02×105 Pa stripping pressure), which were reduced by 20.92% and 40.0% compared to using traditional MEA solution.
引文
[1]中国电力企业联合会.中国煤电清洁发展报告[EB/OL].[2017-09-22]. http://www. cec. org. cn/zhuanti/2017nianzhuanti/zhongguomei dianqingjiefazhanyuhuanjingyingxiangfabuyantaohui/yaowen/2017-09-22/173384.html.The China Electricity Council. The development of Chinese coal cleaning report[EB/OL].[2017-09-22]. http://www.cec.org.cn/zhuanti/2017nianzhuanti/zhongguomeidianqingjiefazhanyuhuanjingyingxiang fabuyantaohui/yaowen/2017-09-22/173384.html.
    [2]英国石油公司. BP世界能源统计年鉴[EB/OL].[2017-06-12]. http://www.bp.com/statisticalreview.BP. BP statistical review of world energy[EB/OL].[2017-06-12]. http://www.bp.com/statisticalreview.
    [3]国家发展与改革委员会.全国碳排放权交易市场建设方案(发电行业)[EB/OL].[2017-12-18]. http://www.ndrc.gov.cn/zcfb/gfxwj/201712/t20171220_871127.html The National Development and Reform Commission(NDRC). The national carbon emissions trading market construction scheme(power generation industry)[EB/OL].[2017-12-18]. http://www.ndrc.gov.cn/zcfb/gfxwj/201712/t20171220_871127.html.
    [4] RUBIN E S, MANTRIPRAGADA H, MARKS A, et al. The outlook for improved carbon capture technology[J]. Progress in Energy and Combustion Scienc, 2012, 38(5):630-671.
    [5] ROCHELLE G T. Amine scrubbing for CO2capture[J]. Science, 2009,325(5948):1652-1654.
    [6] IDEM R, SUPAP T, SHI H, et al. Practical experience in postcombustion CO2capture using reactive solvents in large pilot and demonstration plants[J]. International Journal of Greenhouse Gas Control, 2015, 40:6-25.
    [7] LIANG Zhiwu, FU Kaiyun, IDEM R, et al. Review on current advances, future challenges and consideration issues for postcombustion CO2capture using amine-based absorbents[J]. Chinese Journal of Chemical Engineering 2016, 24(2):278-288.
    [8] LI Kangkang, LEIGH W, FERON P, et al. Systematic study of aqueous monoethanolamine(MEA)-basedCO2captureprocess:techno-economic assessment of the MEA process and its improvements[J]. Applied Energy, 2016, 165:648-659.
    [9]方梦祥,周旭萍,王涛,等. CO2化学吸收剂[J].化学进展, 2015, 27(12):1808-1814.FANG Mengxiang, ZHOU Xuping, WANG Tao, et al. Solvent development in CO2chemical absorption[J]. Progress in Chemistry,2015, 27(12):1808-1814.
    [10]陈健,罗伟亮,李晗.有机胺吸收二氧化碳的热力学和动力学研究进展[J].化工学报, 2014, 65(1):12-21.CHEN Jian, LUO Weiliang, LI Han. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines[J]. CIESC Journal, 2014, 65(1):12-21.
    [11] CLOSMANN F, NGUYEN T, ROCHELLE G T. MDEA/piperazine as a solvent for CO2capture[J]. Energy Procedia, 2009, 1(1):1351-1357.
    [12] FRAILIE P T. Modeling of carbon dioxide absorption/stripping by aqueous methyldiethanolamine/piperazine[D]. Austin:The University of Texas at Austin, 2014.
    [13] SVENSSON H, HULTEBERG C, KARLSSON H T. Heat of absorption of CO2in aqueous solutions of N-methyldiethanolamine and piperazine[J]. International Journal of Greenhouse Gas Control, 2013, 17:89-98.
    [14] KHAN A A, HALDER G N, SAHA A K. Experimental investigation on efficient carbon dioxide capture using piperazine(PZ)activated aqueous methyldiethanolamine(MDEA)solution in a packed column[J]. International Journal of Greenhouse Gas Control, 2017, 64(s):163-173.
    [15] HUANG Jicai, GONG Maoqiong, DONG Xueqiang, et al. CO2solubility in aqueous solutions of N-methyldiethanolamine plus piperazine by electrolyte NRTL model[J]. Science China-Chemistry,2016, 59(3):360-369.
    [16] MOIOLI S, PELLEGRINI L A. Modeling the methyldiethanolaminepiperazine scrubbing system for CO2removal:thermodynamic analysis[J]. Frontiers of Chemical Science and Engineering, 2016, 10(1):162-175.
    [17] SAMANTA A, BANDYOPADHYAY S S. Absorption of carbon dioxide into piperazine activated aqueous N-methyldiethanolamine[J].Chemical Engineering Journal, 2011, 171(3):734-741.
    [18] SAIDI M. Rate-based modeling of CO2absorption into piperazineactivated aqueous N-methyldiethanolamine solution:kinetic and mass transfer analysis[J]. International Journal of Chemical Kinetics, 2017,49(9):690-708.
    [19] TOBIESEN F A, SVENDSEN H F, MEJDELL T. Modeling of blast furnace CO2capture using amine absorbents[J]. Industrial&Engineering Chemistry Research, 2007, 46(23):7811-7819.
    [20] MUDHASAKUL S, KU H M, DOUGLAS P L. A simulation model of a CO2absorption process with methyldiethanolamine solvent and piperazine as an activator[J]. International Journal of Greenhouse Gas Control, 2013, 15(s):134-141.
    [21] ZHAO Bin, LIU Fangzheng, CUI Zheng, et al. Enhancing the energetic efficiency of MDEA/PZ-based CO2capture technology for a 650 MW power plant:process improvement[J]. Applied Energy, 2017, 185:362-375.
    [22] DUBOIS L, THOMAS D. Comparison of various configurations of the absorption-regeneration process using different solvents for the postcombustion CO2capture applied to cement plant flue gases[J].International Journal of Greenhouse Gas Control, 2018, 69:20-35.
    [23]李晗,陈健.单乙醇胺吸收CO2的热力学模型和过程模拟[J].化工学报, 2014, 65(1):47-54.LI Han,CHEN Jian. Thermodynamic modeling and process simulation for CO2absorption into aqueous monoethanolamine solution[J]. CIESC Journal, 2014, 65(1):47-54.
    [24]张克舫,刘中良,王远亚,等.化学吸收法CO2捕集解吸能耗的分析计算[J].化工进展, 2013, 32(12):3008-3014.ZHANG Kefang, LIU Zhongliang, WANG Yuanya, et al. Analysis and calculation of the desorption energy consumption of CO2capture process by chemical absorption method[J]. Chemical Industry and Engineering Progress, 2013, 32(12):3008-3014.
    [25]张亚萍,刘建周,季芹芹,等.醇胺法捕集燃煤烟气CO2工艺模拟及优化[J].化工进展, 2013, 32(4):930-935.ZHANG Yaping, LIU Jianzhou, JI Qinqin, et al. Process simulation and optimization of flue gas CO2capture by the alkanolamine solutions[J]. Chemical Industry and Engineering Progress, 2013, 32(4):930-935.
    [26] WANG Tao, HE Hui, YU Wei, et al. Process simulations of CO2desorption in the interaction between the novel direct steam stripping process and solvents[J]. Energy&Fuels, 2017, 31(4):4255-4262.
    [27] Aspen Technology Inc. ENRTL-RK rate-based model of the CO2capture process by mixed PZ and MDEA using Aspen plus[EB/OL].[2018-02-10]. https://www.aspentech.com/en/products/engineering/aspen-plus.
    [28] DAMARTZIS T, PAPADOPOULOS A I, SEFERLIS P. Process flowsheet design optimization for various amine-based solvents in post-combustion CO2capture plants[J]. Journal of Cleaner Production,2016, 111:204-216.
    [29] BEK-PEDERSEN E, GANI R. Design and synthesis of distillation systems using a driving-force-based approach[J]. Chemical Engineering&Processing Process Intensification, 2004, 43(3):251-262.
    [30] REZAZADEH F, GALE W F, LIN Y J, et al. Energy performance of advanced reboiled and flash stripper configurations for CO2capture using monoethanolamine[J]. Industrial&Engineering Chemistry Research, 2016, 55(16):4622-4631.
    [31] LI Kangkang, COUSINS A, YU Hai, et al. Systematic study of aqueous monoethanolamine-based CO2capture process:model development and process improvement[J]. Energy Science&Engineering, 2016, 4(1):23-39.
    [32] FAN Zhen, LIU Kun, QI Guojie, et al. Aspen modeling for MEA-CO2loop:dynamic gridding for accurate column profile[J]. International Journal of Greenhouse Gas Control, 2015, 37:318-324.
    [33] YING Jiru, RAETS S, EIMER D. The activator mechanism of piperazine in aqueous methyldiethanolamine solutions[J]. Energy Procedia, 2017, 114:2078-2087.
    [34] ZHANG W, CHEN J, LUO X, et al. Modelling and process analysis of post-combustion carbon capture with the blend of 2-amino-2-methyl-1-propanol and piperazine[J]. International Journal of Greenhouse Gas Control, 2017, 63:37-46.
    [35] KHALILPOUR R. Flexible operation scheduling of a power plant integrated with PCC processes under market dynamics[J]. Industrial&Engineering Chemistry Research, 2014, 53(19):8132-8146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700