Magmatism and metamorphism at ca. 1.45 Ga in the northern Gawler Craton: The Australian record of rifting within Nuna(Columbia)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Magmatism and metamorphism at ca. 1.45 Ga in the northern Gawler Craton: The Australian record of rifting within Nuna(Columbia)
  • 作者:Laura ; J.Morrissey ; Karin ; M.Barovich ; Martin ; Hand ; Katherine ; E.Howard ; Justin ; L.Payne
  • 英文作者:Laura J. Morrissey;Karin M. Barovich;Martin Hand;Katherine E. Howard;Justin L. Payne;School of Natural and Built Environments, University of South Australia;Department of Earth Sciences, School of Physical Sciences, University of Adelaide;
  • 英文关键词:Gawler Craton;;Laurentia;;Metamorphism;;U-Pb geochronology;;Paleogeographic reconstruction
  • 中文刊名:GSFT
  • 英文刊名:地学前缘(英文版)
  • 机构:School of Natural and Built Environments, University of South Australia;Department of Earth Sciences, School of Physical Sciences, University of Adelaide;
  • 出版日期:2019-01-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:v.10
  • 基金:supported by ARC Linkage Project LP160100578 (MH and JP);; ARCDiscovery Project DP160104637 (MH)
  • 语种:英文;
  • 页:GSFT201901015
  • 页数:20
  • CN:01
  • ISSN:11-5920/P
  • 分类号:179-198
摘要
U-Pb monazite and zircon geochronology and calculated metamorphic phase diagrams from drill holes in the northern Gawler Craton, southern Australia, reveal the presence of ca. 1.45 Ga magmatism and metamorphism. Magmatism and granulite facies metamorphism of this age has not previously been recognised in the Gawler Craton. The magmatic rocks have steep LREE-enriched patterns and high Ga/Al values, suggesting they are A-type granites. Calculated metamorphic forward models suggest that this event was associated with high apparent thermal gradients and reached pressures of 3.2 -5.4 kbar and temperatures of 775-815℃. The high apparent thermal gradients may reflect pluton-enhanced metamorphism, consistent with the presence of A-type granites. The recognition of ca. 1.45 Ga tectonism in the northern Gawler Craton is added to a compilation of ca. 1.50 -1.40 Ga magmatism, shear zone reactivation, rift basin development and isotope resetting throughout the South and North Australian Cratons that shows that this event was widespread in eastern Proterozoic Australia. This event is stylistically similar to ca. 1.45 Ga A-type magmatism and high thermal gradient metamorphism in Laurentia in this interval and provides further support for a connection between Australia and Laurentia during the Mesoproterozoic. The tectonic setting of the 1.50-1.40 Ga event is unclear but may record rifting within the Nuna(or Columbia) supercontinent, or a period of intracontinental extension within a long-lived convergent setting.
        U-Pb monazite and zircon geochronology and calculated metamorphic phase diagrams from drill holes in the northern Gawler Craton, southern Australia, reveal the presence of ca. 1.45 Ga magmatism and metamorphism. Magmatism and granulite facies metamorphism of this age has not previously been recognised in the Gawler Craton. The magmatic rocks have steep LREE-enriched patterns and high Ga/Al values, suggesting they are A-type granites. Calculated metamorphic forward models suggest that this event was associated with high apparent thermal gradients and reached pressures of 3.2 -5.4 kbar and temperatures of 775-815℃. The high apparent thermal gradients may reflect pluton-enhanced metamorphism, consistent with the presence of A-type granites. The recognition of ca. 1.45 Ga tectonism in the northern Gawler Craton is added to a compilation of ca. 1.50 -1.40 Ga magmatism, shear zone reactivation, rift basin development and isotope resetting throughout the South and North Australian Cratons that shows that this event was widespread in eastern Proterozoic Australia. This event is stylistically similar to ca. 1.45 Ga A-type magmatism and high thermal gradient metamorphism in Laurentia in this interval and provides further support for a connection between Australia and Laurentia during the Mesoproterozoic. The tectonic setting of the 1.50-1.40 Ga event is unclear but may record rifting within the Nuna(or Columbia) supercontinent, or a period of intracontinental extension within a long-lived convergent setting.
引文
Abbot, S.T., Sweet, I.P., 2000. Tectonic control on third-order sequences in a siliciclastic ramp-style basin:an example from the Roper Superbasin(Mesoproterozoic), Northern Australia. Australian Journal of Earth Sciences 47, 637-657.
    Aitken, A.R.A., Betts, P.G., Young, D.A., Blankenship, D.D., Roberts, J.L., Siegert, M.J.,2016. The Australo-Antarctic Columbia to Gondwana transition. Gondwana Research 29,136-152.
    Aitken, A.R.A., Young, D.A., Ferraccioli, F., Betts, P.G., Greenbaum, J.S., Richter, T.G.,Roberts, J.L., Blankenship, D.D., Siegert, M.J., 2014. The subglacial geology of Wilkes Land, east Antarctica. Geophysical Research Letters 41, 2390-2400.
    Aleinikoff, J.N., Schenck, W.S., Plank, M.O., Srogi, L.A., Fanning, C.M., Kamo,S.L.,Bosbyshell, H., 2006. Deciphering igneous and metamorphic events in highgrade rocks of the Wilmington complex, Delaware:morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Bulletin of the Geological Society of America 118, 39-64.
    Anderson, J.L.,Bender, E.E.,1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos 23,19-52.
    Anderson, J.L.,Cullers, R.L.,1999. Paleo-and Mesoproterozoic granite plutonism of Colorado and Wyoming. Rocky Mountain Geology 34,149-164.
    Anderson, J.R., Kelsey, D.E., Hand, M., Collins, W.J., 2013. Conductively driven, highthermal gradient metamorphism in the Anmatjira Range, Arunta region, central Australia. Journal of Metamorphic Geology 31,1003-1026.
    Anderson, J.R., Kelsey, D.E., Hand, M., Collins, W.J., 2016. Mesoproterozoic Metamorphism in the Rudall Province:Revising the Timeline of the Yapungku Orogeny and Implications for Cratonic Australia Assembly, Australian Earth Sciences Convention 2016:Uncover the Earth's Past to Discover Our Future.AESC Abstracts, Adelaide, p. 228.
    Armit, R., Betts, P.G., Schaefer,B.F., Yi, K., Kim, Y., Dutch, R.A., Reid, A., Jagodzinski, L.,Giles, D., Ailleres, L., 2017. Late Palaeoproterozoic evolution of the buried northern Gawler Craton. Precambrian Research 291,178-201.
    Bagas, L., 2004. Proterozoic evolution and tectonic setting of the northwest Paterson Orogen, Western Australia. Precambrian Research 128, 475-496.
    Betts, P.G., Armit, R.J., Stewart, J., Aitken, A.R.A., Ailleres, L., Donchak, P., Hutton, L.,Withnall, I., Giles, D., 2016. Australia and Nuna. In:Li, Z.X., Evans, D.A.D.,Murphy, J.B.(Eds.), Supercontinent Cycles through Earth History. Geological Society, London, pp. 47-81. Special Publications.
    Betts, P.G., Giles, D., 2006. The 1800-1100 Ma tectonic evolution of Australia. Precambrian Research 144, 92-125.
    Betts, P.G., Giles, D., Schaefer, B.F., 2008. Comparing 1800-1600 Ma accretionary and basin processes in Australia and Laurentia:possible geographic connections in Columbia. Precambrian Research 166, 81-92.
    Beyer, S.R., Kyser, K., Polito, P.A., Fraser, G.L., 2018. Mesoproterozoic rift sedimentation, fluid events and uranium prospectivity in the Cariewerloo Basin, Gawler Craton, South Australia. Australian Journal of Earth Sciences 65, 409-426.
    Bickford, M.E., Van Schmus, W.R., Karlstrom, K.E., Mueller, P.A., Kamenov, G.D., 2015.Mesoproterozoic-trans-Laurentian magmatism:a synthesis of continent-wide age distributions, new SIMS U-Pb ages, zircon saturation temperatures, and Hf and Nd isotopic compositions. Precambrian Research 265, 286-312.
    Black, L.P., Bell, T.H., Rubenach, M.J., Withnall, I.W., 1979. Geochronology of discrete structural-metamorphic events in a multiply deformed precambrian terrain.Tectonophysics 54,103-137.
    Boger, S.D., Hansen, D., 2004. Metamorphic evolution of the Georgetown Inlier,northeast Queensland, Australia; evidence for an accreted Palaeoproterozoic terrane? Journal of Metamorphic Geology 22, 511-527.
    Boyd, F., Mertzman, S., 1987. Composition and structure of the Kaapvaal lithosphere,southern Africa. In:Mysen, B.O.(Ed.), Magmatic Processes:Physicochemical Principles. Geochemical Society Special Publication, pp. 13-24.
    Boynton, W.V., 1984. Cosmochemistry of the rare earth elements:meteorite studies.Developments in Geochemistry 2, 63-114.
    Cawood, P.A., Hawkesworth, C.J., 2015. Temporal relations between mineral deposits and global tectonic cycles. In:Jenkin, G.R.T., Lusty, P.A.J., McDonald, L.,Smith, M.P., Boyce, A.J., Wilkinson, J.J.(Eds.), Ore Deposits in an Evolving Earth.Geological Society, London, Special Publications, pp. 9-21.
    Cawood, P.A., Korsch, R.J., 2008. Assembling Australia:Proterozoic building of a continent. Precambrian Research 166, 1-35.
    Cherry, A.R., McPhie, J., Kamenetsky, V.S., Ehrig, K., Keeling, J.L., Kamenetsky, M.B.,Meffre, S., Apukhtina, O.B., 2017. Linking Olympic Dam and the Cariewerloo Basin:was a sedimentary basin involved in formation of the world's largest uranium deposit? Precambrian Research 300,168-180.
    Condie, K.C., Aster, R.C., 2010. Episodic zircon age spectra of orogenic granitoids:the supercontinent connection and continental growth. Precambrian Research 180,227-236.
    Condie, K.C., Bickford, M.E., Aster, R.C., Belousova, E., Scholl, D.W., 2011. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. GSA Bulletin 123, 951-957.
    Connors, K.A., Page, R.W., 1995. Relationships between magmatism, metamorphism and deformation in the western Mount Isa Inlier, Australia. Precambrian Research 71,131-153.
    Conor, C.H.H., Preiss, W.V., 2008. Understanding the 1720-1640 Ma Palaeoproterozoic Willyama supergroup, Curnamona province, southeastern Australia:implications for tectonics, basin evolution and ore genesis. Precambrian Research 166, 297-317.
    Cutts, K., Hand, M., Kelsey, D.E., 2011. Evidence for early Mesoproterozoic(ca. 1590Ma)ultrahigh-temperature metamorphism in southern Australia. Lithos 124,1-16.
    Daly, S.J., Fanning, C.M., Fairclough, M.C., 1998. Tectonic evolution and exploration potential of the Gawler craton, south Australia. AGSO Journal of Australia Geology and Geophysics 17,145-168.
    Daniel, C.G., Pfeifer, L.S., Jones, J.V., McFarlane, C.M., 2013. Detrital zircon evidence for non-Laurentian provenance, Mesoproterozoic(ca. 1490-1450 Ma)deposition and orogenesis in a reconstructed orogenic belt, northern New Mexico,USA:defining the Picuris orogeny. Geological Society of America Bulletin 125,1423-1441.
    Daniel, C.G., Pyle,J.M., 2006. Monazite-xenotime Thermochronometry and Al2SiO5reaction textures in the Picuris range, northern New Mexico, USA:new evidence for a 1450-1400 Ma orogenic event. Journal of Petrology 47, 97-118.
    Diener, J.F.A., White, R.W., Powell, R., 2008. Granulite facies metamorphism and subsolidus fluid-absent reworking, Strangways Range, Arunta Block, central Australia. Journal of Metamorphic Geology 26, 603-622.
    Doe, M.F., Jones Iii, J.V., Karlstrom, K.E., Dixon, B., Gehrels, G., Pecha, M., 2013. Using detrital zircon ages and Hf isotopes to identify 1.48-1.45 Ga sedimentary basins and fingerprint sources of exotic 1.6-1.5 Ga grains in southwestern Laurentia.Precambrian Research 231, 409-421.
    Doe, M.F., Jones, J.V., Karlstrom, K.E., Thrane, K., Frei, D., Gehrels, G., Pecha, M., 2012.Basin formation near the end of the 1.60-1.45 Ga tectonic gap in southern Laurentia:Mesoproterozoic Hess Canyon Group of Arizona and implications for ca. 1.5 Ga supercontinent configurations. Lithosphere 4, 77-88.
    Dragovic, B., Guevara, V.E., Caddick, M.J., Baxter, E.F., Kylander-Clark, A.R.C., 2016.A pulse of cryptic granulite-facies metamorphism in the Archean Wyoming Craton revealed by Sm-Nd garnet and U-Pb monazite geochronology. Precambrian Research 283,24-49.
    Dutch, R., Hand, M., Kinny, P.D., 2008. High-grade Paleoproterozoic reworking in the southeastern Gawler craton, south Australia. Australian Journal of Earth Sciences 55,1063-1081.
    Dutch, R.A., Hand, M., Kelsey, D.E., 2010. Unravelling the tectonothermal evolution of reworked Archean granulite facies metapelites using in situ geochronology:an example from the Gawler Craton, Australia. Journal of Metamorphic Geology28, 293-316.
    Evans, D.A.D., 2009. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontient reconstruction. In:Murphy, J.B., Keppie, J.D., Hynes, A.J.(Eds.), Ancient Orogens and Modern Analogues. Geological Society of London Special Publications, pp. 371-404.
    Evans, D.A.D., Mitchell, R.N., 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology 39, 443-446.
    Evans, K.V., Aleinikoff, J.N., Obradovich, J.D., Fanning, C.M., 2000. SHRIMP U-Pb geochronology of volcanic rocks, Belt Supergroup, western Montana:evidence for rapid deposition of sedimentary strata. Canadian Journal of Earth Sciences37, 1287-1300.
    Fanning, C.M., Flint, R.B., Parker, A.J., Ludwig, K.R., Blissett, A.H., 1988. Refined Proterozoic evolution of the Gawler craton, south Australia, through U-Pb zircon geochronology. Precambrian Research 40-41, 363-386.
    Fanning, C.M., Flint, R.B., Preiss, W.V., 1983. Geochronology of the Pandurra Formation.South Australia. Geological Survey Quarterly Geological Notes 88,11-16.
    Fanning, C.M., Reid, A.J., Teale, G.S., 2007. A geochronological framework for the Gawler craton, south Australia, south Australia. Geological Survey Bulletin 55.
    Forbes, C.J., Giles, D., Hand, M., Betts, P.G., Suzuki, K., Chalmers, N., Dutch, R., 2011.Using P-T paths to interpret the tectonothermal setting of prograde metamorphism:an example from the northeastern Gawler Craton, South Australia.Precambrian Research 185, 65-85.
    Forbes, C.J., Giles, D., Jourdan, F., Sato, K., Omori, S., Bunch, M., 2012. Cooling and exhumation history of the northeastern Gawler craton, south Australia. Precambrian Research 200-203, 209-238.
    Foster, D.A., Ehlers, K., 1998. 40Ar-39Ar thermochronology of the southern Gawler craton, Australia:implications for Mesoproterozoic and Neoproterozoic tectonics of east Gondwana and Rodinia. Journal of Geophysical Research 103,10177-10193.
    Fraser, G., McAvaney, S., Neumann, N., Szpunar, M., Reid, A., 2010. Discovery of early Mesoarchean crust in the eastern Gawler craton, south Australia. Precambrian Research 179,1-21.
    Fraser, G., Reid, A., Stern, R., 2012. Timing of deformation and exhumation across the Karari shear zone, north-western Gawler craton, south Australia. Australian Journal of Earth Sciences 59, 547-570.
    Fraser, C.L.,Lyons, P., 2006. Timing of Mesoproterozoic tectonic activity in the northwestern Gawler Craton constrained by 40Ar/39Ar geochronology. Precambrian Research 151,160-184.
    Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001.A geochemical Classification for granitic rocks. Journal of Petrology 42,2033-2048.
    Frost, C.D., Frost, B.R., 2013. Proterozoic ferroan feldspathic magmatism. Precambrian Research 228,151-163.
    Giles, D., Betts, P.G., Lister, G.S., 2004.1.8-1.5-Ga links between the north and south Australian cratons and the early-middle Proterozoic configuration of Australia.Tectonophysics 380, 27-41.
    Goodge, J., Siddoway, C., 1997. Mineral reactions and Petrogenetic Implications of Fe-mn-andalusite, Northern Wet Mountains, Colorado:Geological Society of America Abstracts with Programs, p. 11.
    Goodge, J.W., Fanning, C.M., Fisher, C.M., Vervoort, J.D., 2017. Proterozoic crustal evolution of central East Antarctica:age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia. Precambrian Research 299,151-176.
    Goodge,J.W., Vervoort, J.D., 2006. Origin of Mesoproterozoic A-type granites in Laurentia:Hf isotope evidence. Earth and Planetary Science Letters 243, 711-731.
    Goodge,J.W., Vervoort, J.D., Fanning, C.M., Brecke, D.M., Farmer, G.L., Williams, I.S.,Myrow, P.M., DePaolo, D.J., 2008. A positive test of East Antarctica-Laurentia juxtaposition within the Rodinia supercontinent. Science 321, 235-240.
    Groves, D.I., Condie, K.C., Goldfarb, R.J., Hronsky,J.M.A., Vielreicher, R.M., 2005.100th Anniversary special Paper:secular changes in global tectonic processes and their influence on the temporal distribution of Gold-bearing mineral deposits. Economic Geology 100, 203-224.
    Hacker, B.R., Kylander-Clark, A.R.C., Holder, R., Andersen, T.B., Peterman, E.M.,Walsh, E.O., Munnikhuis, J.K., 2015. Monazite response to ultrahigh-pressure subduction from U-Pb dating by laser ablation split stream. Chemical Geology 409, 28-41.
    Hall,J.W., Glorie, S., Reid, A.J., Boone, S.C., Collins, A.S., Gleadow, A., 2018. An apatite U-Pb thermal history map for the northern Gawler Craton, South Australia.Geoscience Frontiers 9(5), 1293-1308.
    Halpin,J.A., Jensen, T., McGoldrick, P., Meffre, S., Berry, R.F., Everard, J.L., Calver, C.R.,Thompson, J., Goemann, K., Whittaker, J.M., 2014. Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania:links to the belt-Purcell supergroup, north America. Precambrian Research 250, 50-67.
    Halpin, J.A., Reid, A.J., 2016. Earliest Paleoproterozoic high-grade metamorphism and orogenesis in the Gawler Craton, South Australia:the southern cousin in the Rae family? Precambrian Research 276,123-144.
    Hand, M., Reid, A.J., Jagodzinski, E., 2007. Tectonic framework and evolution of the Gawler craton, southern Australia. Economic Geology 102,1377-1395.
    Holland, T.J.B., Powell, R., 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology 29, 333-383.
    Howard, K.E., Hand, M., Barovich, K.,Belousova, E.,2011a. Provenance of late Paleoproterozoic cover sequences in the central Gawler Craton:exploring stratigraphic correlations in eastern Proterozoic Australia using detrital zircon ages, Hf and Nd isotopic data. Australian Journal of Earth Sciences 58, 475-500.
    Howard, K.E., Hand, M., Barovich, K.M., Payne, J.L., Belousova, E.A., 2011b. U-Pb,Lu-Hf and Sm-Nd isotopic constraints on provenance and depositional timing of metasedimentary rocks in the western Gawler Craton:implications for Proterozoic reconstruction models. Precambrian Research 184, 43-62.
    Howard, K.E., Hand, M., Barovich, K.M., Payne, J.L., Cutts, K.A., Belousova, E.A., 2011c.U-Pb zircon, zircon Hf and whole-rock Sm-Nd isotopic constraints on the evolution of Paleoproterozoic rocks in the northern Gawler Craton. Australian Journal of Earth Sciences 58, 615-638.
    Jackson, M.J., Sweet, I.P.,Page, R.W., Bradshaw, B.E., 1999. The South Nicholson and roper groups:evidence for the early mesoproterozoic roper superbasin. In:Bradshaw, B.E., Scott, D.L.(Eds.), Integrated Basin Analysis of the Isa Superbasin using Seismic, Well-log and Geopotential Data:An Evaluation of the Economic Potential of the Northern Lawn Hill Platform Australian Geological Survey Organisation. Record 1999/19 36-45.
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 47-69.
    Jagodzinski, E.A., Reid, A.J., Chalmers, N., Swain, G., Frew, R.A., Foudoulis, C., 2007.Compilation of SHRIMP U-Pb Geochronological Data for the Gawler Craton,South Australia. South Australian Department of Primary Industries and Resources. Report Book 2007/21.
    Johnson, T.E., White, R.W., 2011. Phase equilibrium constraints on conditions of granulite-facies metamorphism at Scourie, NW Scotland. Journal of the Geological Society 168,147-158.
    Jones, J.V., Daniel, C.G., Doe, M.F., 2015. Tectonic and sedimentary linkages between the Belt-Purcell basin and southwestern Laurentia during the Mesoproterozoic,ca. 1.60-1.40 Ga. Lithosphere 7, 465-472.
    Jones, J.V., Daniel, C.G., Frei, D., Thrane, K., 2011. Revised regional correlations and tectonic implications of Paleoproterozoic and Mesoproterozoic metasedimentary rocks in northern New Mexico, USA:new findings from detrital zircon studies of the Hondo Group, Vadito Group, and Marquenas Formation. Geosphere 7, 974-991.
    Jones, J.V., Rogers, S.A., Connelly, J.N., 2010a. U-Pb geochronology of Proterozoic granites in the Sawatch Range, central Colorado. U.S.A. Rocky Mountain Geology 45,1-22.
    Jones, J.V., Siddoway, C.S., Connelly, J.N., 2010b. Characteristics and implications of ca. 1.4 Ga deformation across a Proterozoic mid-crustal section, Wet Mountains,Colorado, USA. Lithosphere 2,119-135.
    Karlstrom, K.E., Ahall, K.-I., Harlan, S.S., Williams, M.L., McLelland, J., Geissman, J.W.,2001. Long-lived(1.8-1.0 Ga)convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Research 111, 5-30.
    Kelsey, D.E., Hand, M., 2015. On ultrahigh temperature crustal metamorphism:phase equilibria, trace element thermometry, bulk composition, heat sources,timescales and tectonic settings. Geoscience Frontiers 6, 311-356.
    Kirkland, C.L., Johnson, S.P., Smithies, R.H., Hollis, J.A., Wingate,M.T.D., Tyler, I.M.,Hickman, A.H., Cliff, J.B., Tessalina, S., Belousova, E.A., Murphy, R.C., 2013a. Notso-suspect terrane:constraints on the crustal evolution of the Rudall Province.Precambrian Research 235,131-149.
    Kirkland, C.L., Smithies, R.H., Spaggiari, C.V., 2015. Foreign contemporariesunravelling disparate isotopic signatures from Mesoproterozoic central and western Australia. Precambrian Research 265, 218-231.
    Kirkland, C.L., Smithies, R.H., Spaggiari, C.V.,Wingate,M.T.D., Quentin de Gromard, R., Clark, C., Gardiner, N.J., Belousova, E.A., 2017. Proterozoic crustal evolution of the Eucla basement, Australia:implications for destruction of oceanic crust during emergence of Nuna. Lithos 278-281, 427-444.
    Kirkland, C.L., Smithies, R.H., Woodhouse, A.J., Howard, H.M., Wingate,M.T.D.,Belousova, E.A., Cliff, J.B., Murphy, R.C., Spaggiari, C.V., 2013b. Constraints and deception in the isotopic record; the crustal evolution of the west Musgrave Province, central Australia. Gondwana Research 23, 759-781.
    Kirkland, C.L., Spaggiari, C.V., Pawley, M.J., Wingate, M.T.D., Smithies, R.H.,Howard, H.M., Tyler, I.M., Belousova, E.A., Poujol, M., 2011. On the edge:U-Pb,Lu-Hf, and Sm-Nd data suggests reworking of the Yilgarn craton margin during formation of the Albany-Fraser Orogen. Precambrian Research 187,223-247.
    Korsch, R.J., Blewett, R.S., Giles, D., Reid, A., Neumann, N., Fraser, G.L., Holzschuh, J.,Costelloe, R.D., Roy, I.G., Kennett, B.L.N., Cowley, W.M., Baines, G., Carr, L.K.,Duan, J., Milligan, P.R., Armit, R., Betts, P.G., Preiss, W.V., Bendall, B.R., 2010.Geological interpretation of the deep seismic reflection and magnetotelluric line 08GA-OM1:Gawler craton-officer basin-Musgrave province-Amadeus basin(GOMA), south Australia and northern Territory. In:Korsch, R.J., Kositcin, N.(Eds.), GOMA(Gawler Craton-officer Basin-Musgrave Province-Amadeus Basin)Seismic and MT Workshop 2010. Geoscience Australia.
    Lane, K., Jagodzinski, E.A., Dutch, R., Reid, A.J., Hand, M., 2015. Age constraints on the timing of iron ore mineralisation in the southeastern Gawler Craton. Australian Journal of Earth Sciences 62, 55-75.
    Li, Z.-X., Li, X.-H., Li, W.-X., Ding, S., 2008a. Was Cathaysia part of Proterozoic Laurentia?-new data from Hainan Island, south China. Terra Nova 20,154-164.
    Li, Z.-X., Li, X.-h., Zhou, H., Kinny, P.D., 2002. Grenvillian continental collision in south China:new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology 30,163-166.
    Li, Z.X., 2000. Palaeomagnetic evidence for unification of the North and West Australian cratons by ca.1.7 Ga:new results from the Kimberley Basin of northwestern Australia. Geophysical Journal International 142, 173-180.
    Lo Po, D., Braga, R., 2014. Influence of ferric iron on phase equilibria in greenschist facies assemblages:the hematite-rich metasedimentary rocks from the Monti Pisani(Northern Apennines). Journal of Metamorphic Geology 32, 371-387.
    McFarlane,C.R.M., 2006. Palaeoproterozoic evolution of the Challenger Au deposit,South Australia, from monazite geochronology. Journal of Metamorphic Geology 24, 75-87.
    Medig, K.P.R., Thorkelson, D.J., Davis, W.J., Rainbird, R.H., Gibson, H.D., Turner, E.C.,Marshall, D.D., 2014. Pinning northeastern Australia to northwestern Laurentia in the Mesoproterozoic. Precambrian Research 249, 88-99.
    Meert, J.G., 2014. Strange attractors, spiritual interlopers and lonely wanderers:the search for pre-Pangean supercontinents. Geoscience Frontiers 5,155-166.
    Merdith, A.S., Collins, A.S., Williams, S.E., Pisarevsky, S., Foden,J.D., Archibald, D.B.,Blades, M.L., Alessio, B.L., Armistead, S., Plavsa, D., Clark, C., Muller, R.D., 2017.A full-plate global reconstruction of the Neoproterozoic. Gondwana Research50, 84-134.
    Middlemost, E.A., 1994. Naming materials in the magma/igneous rock system.Earth-Science Reviews 37, 215-224.
    Morrissey, L.J., Hand, M., Kelsey, D.E., Wade, B.P., 2016a. Cambrian high-temperature reworking of the Rayner-Eastern Ghats terrane, constraints from the northernPrince Charles Mountains region, east Antarctica. Journal of Petrology 57,53-92.
    Morrissey, L.J., Hand, M., Lane, K., Kelsey, D.E., Dutch, R.A., 2016b. Upgrading ironore deposits by melt loss during granulite facies metamorphism. Ore Geology Reviews 74,101-121.
    Morrissey, L.J., Hand, M., Raimondo, T., Kelsey, D.E., 2014. Long-lived hightemperature, low-pressure granulite facies metamorphism in the Arunta Region, central Australia. Journal of Metamorphic Geology 32, 25-47.
    Morrissey, L.J., Hand, M., Wade, B.P., Szpunar, M., 2013. Early Mesoproterozoic metamorphism in the Barossa complex, south Australia:links with the eastern margin of Proterozoic Australia. Australian Journal of Earth Sciences 60, 769-795.
    Mulder, J.A., Halpin, J.A., Daczko, N.R., 2015. Mesoproterozoic Tasmania:Witness to the east Antarctica-Laurentia connection within Nuna. Geology 43,759-762.
    Myers, J.S., Shaw, R.D., Tyler, I.M., 1996. Tectonic evolution of Proterozoic Australia.Tectonics 15,1431-1446.
    Nance, R.D., Murphy, J.B., Santosh, M., 2014. The supercontinent cycle:a retrospective essay. Gondwana Research 25, 4-29.
    Nyman, M.W., Karlstrom, K.E., 1997. Pluton emplacement processes and tectonic setting of the 1.42 Ga Signal batholith, SW USA:important role of crustal anisotropy during regional shortening. Precambrian Research 82, 237-263.
    Nyman, M.W., Karlstrom, K.E., Kirby, E., Graubard, C.M., 1994. Mesoproterozoic contractional orogeny in western North America:evidence from ca. 1.4 Ga plutons. Geology 22, 901-904.
    Page, R.W., Sun, S.S., 1998. Aspects of geochronology and crustal evolution in the eastern fold belt, Mt Isa Inlier. Australian Journal of Earth Sciences 45,343-361.
    Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite:Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508-2518.
    Payne, J.L., Barovich, K., Hand, M., 2006. Provenance of metasedimentary rocks in the northern Gawler craton, Australia:implications for Palaeoproterozoic reconstructions. Precambrian Research 148, 275-291.
    Payne, J.L., Ferris, G., Barovich, K.M., Hand, M., 2010. Pitfalls of classifying ancient magmatic suites with tectonic discrimination diagrams:an example from the Paleoproterozoic Tunkillia Suite, southern Australia. Precambrian Research 177,227-240.
    Payne, J.L., Hand, M., Barovich, K.M., Reid, A., Evans, DA.D., 2009. Correlations and reconstruction models for the 2500-1500 Ma evolution of the Mawson Continent. In:Reddy, S.M., Mazumder, R., Evans, D.A.D., Collins, A.S.(Eds.), Palaeoproterozoic Supercontinents and Global Evolution. Geological Society, London,Special Publications, pp. 319-355.
    Payne, J.L., Hand, M., Barovich, K.M., Wade, B.P., 2008. Temporal constraints on the timing of high-grade metamorphism in the northern Gawler Craton:implications for assembly of the Australian Proterozoic. Australian Journal of Earth Sciences 55, 623-640.
    Pehrsson, S.J., Eglington, B.M., Evans, D.A.D., Huston, D., Reddy, S.M., 2015. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. In:Li, Z.X., Evans, D.A.D., Murphy, J.B.(Eds.), Supercontinent Cycles through Earth History. Geological Society, London, pp. 83-94. Special Publications.
    Pisarevsky, S.A., Elming, S.-A., Pesonen, L.J., Li, Z.-X., 2014. Mesoproterozoic paleogeography:supercontinent and beyond. Precambrian Research 244, 207-225.
    Powell, R., White, R.W., Green, E.C.R., Holland,T.J.B., Diener, J.F.A., 2014. On parameterizing thermodynamic descriptions of minerals for petrological calculations. Journal of Metamorphic Geology 32, 245-260.
    Reddy, S.M., Evans, D.A.D., 2009. Palaeoproterozoic supercontinents and global evolution:correlations from core to atmosphere. In:Reddy, S.M., Mazumder, R.,Evans, D.A.D., Collins, A.S.(Eds.), Palaeoproterozoic Supercontinents and Global Evolution. Geological Society, London, pp. 1-26. Special Publications.
    Reid, A.J., Hand,M., 2012. Mesoarchean to Mesoproterozoic evolution of the southern Gawler craton, south Australia. Episodes 35, 216-225.
    Reid,A.J., Jagodzinski, E.A., Armit,R.J., Dutch, R.A., Kirkland, C.L., Betts,P,G.,Schaefer, B.F., 2014a. U-Pb and Hf isotopic evidence for Neoarchean and Paleoproterozoic basement in the buried northern Gawler Craton, South Australia.Precambrian Research 250,127-142.
    Reid,A.J.,Jagodzinski, E.A., Fraser, G.L., Pawley, M.J., 2014b. SHRIMP U-Pb zircon age constraints on the tectonics of the Neoarchean to early Paleoproterozoic transition within the Mulgathing complex, Gawler craton, south Australia. Precambrian Research 250, 27-49.
    Reid, A.J., Jagodzinski, E.A., Wade, C.E., Payne, J.L., Jourdan, F., 2017. Recognition of c.1780Ma magmatism and metamorphism in the buried northeastern Gawler Craton:correlations with events of the Aileron Province. Precambrian Research302,198-220.
    Ross, G.M., Parrish, R.R., Winston, D., 1992. Provenance and U-Pb geochronology of the Mesoproterozoic Belt Supergroup(northwestern United States):implications for age of deposition and pre-Panthalassa plate reconstructions. Earth and Planetary Science Letters 113, 57-76.
    Ross, G.M., Villeneuve, M., 2003. Provenance of the Mesoproterozoic(1.45 Ga)Belt basin(western North America):another piece in the pre-Rodinia paleogeographic puzzle. Geological Society of America Bulletin 115,1191-1217.
    Rubenach,M.J., Foster, D.R.W., Evins,P.M., Blake, K.L.,Fanning, C.M., 2008. Age constraints on the tectonothermal evolution of the Selwyn zone, eastern fold belt, mount Isa Inlier. Precambrian Research 163, 81-107.
    Schmidt, P.W., Williams, G.E., Camacho, A.,Lee, J.K.W., 2006. Assembly of Proterozoic Australia:implications of a revised pole for the~1070 Ma Alcurra Dyke Swarm, central Australia. Geophysical Journal International 167, 626-634.
    Selverstone, J., Hodgins, M., Aleinikoff, J.N., Fanning, C.M., 2000. Mesoproterozoic reactivation of a Paleoproterozoic transcurrent boundary in the northern Colorado Front Range:Implications for~1.7-and 1.4-Ga tectonism. Rocky Mountain Geology 35, 139-162.
    Shaw, R.D., Black, L.P., 1991. The history and tectonic implications of the Redbank Thrust Zone, central Australia, based on structural, metamorphic and Rb-Sr isotopic evidence. Australian Journal of Earth Sciences 38, 307-332.
    Siddoway, C.S., Givot, R.M., Bodle, C.D., Heizler, M.T., 2000. Dynamic versus anorogenic setting for Mesoproterozoic plutonism in the Wet Mountains, Colorado:does the interpretation depend on level of exposure? Rocky Mountain Geology 35, 91-111.
    Slama, J., Kosler, J., Condon, D.J., Crowley, J.L.,Gerdes, A., Hanchar, J.M.,Horstwood,M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U.,Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plesovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249, 1-35.
    Smithies, R.H., Bagas, L., 1997. High pressure amphibolite-granulite facies metamorphism in the Paleoproterozoic Rudall Complex, central Western Australia.Precambrian Research 83, 243-265.
    Smithies, R.H.,Howard, H.M.,Evins,P.M.,Kirkland, C.L.,Kelsey,D.E.,Hand, M.,Wingate, M.T.D., Collins, A.S., Belousova, E., 2011. High-temperature granite magmatism, crust-mantle interaction and the Mesoproterozoic intracontinental evolution of the Musgrave Province, Central Australia. Journal of Petrology 52,931-958.
    Smits, R.G., Collins, W.J., Hand, M., Dutch, R., Payne. J.L., 2014. A Proterozoic Wilson cycle identified by Hf isotopes in central Australia:implications for the assembly of Proterozoic Australia and Rodinia. Geology 42, 231-234.
    Spaggiari, C.V., Kirkland, C.L., Smithies, R.H., Wingate,M.T.D., Belousova, E.A., 2015.Transformation of an Archean craton margin during Proterozoic basin formation and magmatism:the Albany-Fraser orogen, western Australia. Precambrian Research 266, 440-466.
    Spikings, R.A., Foster, D.A., Kohn, B.P., Lister, G.S., 2002. Post-orogenic(<1500 Ma)thermal history of the Palaeo-Mesoproterozoic, Mt. Isa province, NE Australia.Tectonophysics 349, 327-365.
    Stevens, B.P.J., Page, R.W., Crooks, A., 2008. Geochronology of Willyama supergroup metavolcanics, metasediments and contemporaneous intrusions, Broken Hill,Australia. Australian Journal of Earth Sciences 55, 301-330.
    Stewart, E.D., Link, P.K., Fanning, C.M., Frost, C.D., McCurry, M., 2010. Paleogeographic implications of non-north American sediment in the Mesoproterozoic upper belt supergroup and Lemhi Group, Idaho and Montana, USA. Geology 38,927-930.
    Swain, G., Barovich, K., Hand,M., Ferris, G., Schwarz, M., 2008. Petrogenesis of the St peter suite, southern Australia:Arc magmatism and Proterozoic crustal growth of the south Australian craton. Precambrian Research 166, 283-296.
    Swain, G., Woodhouse, A., Hand, M., Barovich, K., Schwarz, M., Fanning, C.M., 2005a.Provenance and tectonic development of the late Archaean Gawler Craton,Australia; U-Pb zircon, geochemical and Sm-Nd isotopic implications. Precambrian Research 141, 106-136.
    Swain, G.M., Hand, M., Teasdale, J., Rutherford, L., Clark, C., 2005b. Age constraints on terrane-scale shear zones in the Gawler Craton, southern Australia. Precambrian Research 139,164-180.
    Szpunar, M., Hand, M., Barovich, K., Jagodzinski, E., Belousova, E., 2011. Isotopic and geochemical constraints on the Paleoproterozoic Hutchison Group, southern Australia:implications for Paleoproterozoic continental reconstructions. Precambrian Research 187, 99-126.
    Thomas, J.L., Direen, N.G., Hand, M., 2008. Blind orogen:Integrated appraisal of multiple episodes of Mesoproterozoic deformation and reworking in the Fowler Domain, western Gawler Craton, Australia. Precambrian Research 166,263-282.
    Tucker, N.M., Hand, M., Kelsey, D.E., Dutch, R.A., 2015. A duality of timescales:shortlived ultrahigh temperature metamorphism preserving a long-lived monazite growth history in the Grenvillian Musgrave-Albany-Fraser Orogen. Precambrian Research 264, 204-234.
    Tucker, N.M.. Morrissey, L.J., Payne, J.L. Szpunar, M., 2018. Genesis of the Archean-Paleoproterozoic Tabletop domain, Rudall province, and its endemic relationship to the west Australian Craton. Australian Journal of Earth Sciences.https://doi.org/10.1080/08120099.2018.1479307(in press).
    Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E.,Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S.,Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008b.Assembly, configuration, and break-up history of Rodinia:a synthesis. Precambrian Research 160,179-210.
    Vassallo, J.J., Wilson,C.J.L.,2002. Palaeoproterozoic regional-scale non-coaxial deformation:an example from eastern Eyre Peninsula, South Australia. Journal of Structural Geology 24,1-24.
    Verbaas, J., Thorkelson, D.J., Crowley, J., Davis, W.J., Foster, D.A., Gibson, H.D.,Marshall, D.D., Milidragovic, D., 2018. A sedimentary overlap assemblage links Australia to northwestern Laurentia at 1.6 Ga. Precambrian Research 305,19-39.
    Wade, B.P., Hand, M., Barovich, K.M., 2005. Nd isotopic and geochemical constraints on provenance of sedimentary rocks in the eastern Officer Basin, Australia:implications for the duration of the intracratonic Petermann Orogeny. Journal of the Geological Society 162, 513-530.
    Wade, B.P., Payne, J.L., Hand, M., Barovich, K.M., 2007. Petrogenesis of ca 1.50 Ga granitic gneiss of the Coompana Block:filling the'magmatic gap'of Mesoproterozoic Australia. Australian Journal of Earth Sciences 54,1089-1102.
    Wade, C.E., Reid, A.J., Wingate,M.T.D., Jagodzinski, E.A., Barovich, K., 2012.Geochemistry and geochronology of the c. 1585Ma Benagerie Volcanic Suite,southern Australia:relationship to the Gawler Range Volcanics and implications for the petrogenesis of a Mesoproterozoic silicic large igneous province.Precambrian Research 206-207,17-35.
    Walsh, A.K., Kelsey, D.E., Kirkland, C.L., Hand,M., Smithies, R.H., Clark, C.,Howard, H.M., 2015. P-T-t evolution of a large, long-lived, ultrahigh-temperature Grenvillian belt in central Australia. Gondwana Research 28, 531-564.
    Webb, A.W., Thomson, B.P., Blissett, A.H., Daly, S.J., Flint, R.B., Parker, A.J., 1986.Geochronology of the Gawler craton, south Australia. Australian Journal of Earth Sciences 33,119-143.
    Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites:geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407-419.
    White, R.W., Powell, C.M., Halpin, J.A., 2004. Spatially-focussed melt formation in aluminous metapelites from Broken Hill, Australia. Journal of Metamorphic Geology 22, 825-845.
    White, R.W., Powell, R., Clarke, G.L, 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia:constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology 20, 41-55.
    White, R.W., Powell, R., Holland,T.J.B., Johnson, T.E., Green, E.C.R., 2014a. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology 32, 261-286.
    White, R.W., Powell, R., Holland,TJ.B., Worley, B.A., 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions:mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO-H2O-TiO-Fe2O3. Journal of Metamorphic Geology 18, 497-511.
    White, R.W., Powell, R., Johnson, T.E., 2014b. The effect of Mn on mineral stability in metapelites revisited:new a-x relations for manganese-bearing minerals.Journal of Metamorphic Geology 32, 809-828.
    Whitmeyer, S.J., Karlstrom, K.E., 2007. Tectonic model for the Proterozoic growth of north America. Geosphere 3, 220-259.
    Wiedenbeck, M., AllE, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F.,Quadt, A.V., Roddick, J.C., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19, 1-23.
    Wingate, M.T.D., Evans, D.A.D., 2003. Palaeomagnetic constraints on the Proterozoic tectonic evolution of Australia. In:Yoshida, M., Windley, B.F., Dasgupta, S.(Eds.),Proterozoic East Gondwana:Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, pp. 77-91.
    Yang, B., Smith, T.M., Collins, A.S., Munson, T.J., Schoemaker, B., Nicholls, D., Cox, G.,Farkas, J., Glorie, S., 2018. Spatial and temporal variation in detrital zircon age provenance of the hydrocarbon-bearing upper roper group, beetaloo sub-basin,Northern Territory, Australia. Precambrian Research 304,140-155.
    Zhang, S., Li, Z.-X., Evans, D.A.D., Wu, H., Li, H., Dong, J., 2012. Pre-Rodinia supercontinent Nuna shaping up:a global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters 353-354,145-155.
    Zhao, G., Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1-1.8 Ga orogens:implications for a pre-Rodinia supercontinent. Earth-Science Reviews59,125-162.
    Zhao, G., Sun, M., Wilde, S.A., Li, S., 2004. A Paleo-Mesoproterozoic supercontinent:assembly, growth and breakup. Earth-Science Reviews 67, 91-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700