微镁处理对车轮钢组织与性能的调控作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of magnesium addition on microstructure and mechanical properties in wheel steel
  • 作者:徐周 ; 王德永 ; 陈开来 ; 屈天鹏 ; 田俊
  • 英文作者:XU Zhou;WANG De-yong;CHEN Kai-lai;QU Tian-peng;TIAN Jun;Shagang School of Iron and Steel,Soochow University;
  • 关键词:Mg处理 ; 车轮钢 ; 夹杂物 ; 微观组织 ; 力学性能
  • 英文关键词:Mg addition;;wheel steel;;inclusion;;microstructure;;mechanical property
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:苏州大学沙钢钢铁学院;
  • 出版日期:2018-08-15
  • 出版单位:钢铁研究学报
  • 年:2018
  • 期:v.30
  • 基金:国家自然科学基金资助项目(51674172);; 江苏省自然科学基金资助项目(BK20150334,BK20150336)
  • 语种:中文;
  • 页:IRON201808007
  • 页数:9
  • CN:08
  • ISSN:11-2133/TF
  • 分类号:52-60
摘要
为揭示Mg在低碳微合金钢中的作用,以HR60车轮钢为研究对象,分别进行实验室感应炉试验和工业试验。采用OM、SEM-EDS和INCA定量统计等方法对比不同处理钢中典型夹杂物特征和微观组织形貌,并对试验钢的力学性能进行测定。结果表明:Mg处理后,钢中Al_2O_3夹杂变质为细小的MgO·Al_2O_3夹杂物,且含Mg夹杂物粒子可有效诱导针状铁素体形核,组织由"多边形铁素体(PF)+珠光体(P)"向"多边形铁素体(PF)+针状铁素体(AF)+退化珠光体(DP)"演变,组织得到细化;Mg处理后,车轮钢强度提高,工业试验钢中,Mg处理钢疲劳极限均大于460MPa,Ca处理钢疲劳极限在450MPa左右,Mg处理钢的疲劳寿命普遍优于Ca处理钢;实验室试验中,降低Nb、Ti含量,当钢中Mg的质量分数为18×10-6时,车轮钢的强度接近基准钢,认为利用Mg的微合金化作用来降低生产成本的方案具有可行性。
        In order to reveal the effect of Mg in low carbon microalloy steel,low carbon microalloy steel of HR60 wheel steel was smelted in vacuum induction furnace and industrial field respectively.The characteristics of typical non-metallic inclusions and microstructure of experimental steels were both compared by OM,SEM-EDS and INCA Feature with automatically scanning inclusions function.The mechanical properties of the experimental steels were also measured.The results show that alumina inclusions are modified to spinel inclusions with small size after Mg addition.Furthermore,acicular ferrite can be induced effectively by inclusions containing magnesium.The microstructures of experimental steels are changed from ‘polygonal ferrite(PF)+ pearlite(P)'to‘polygonal ferrite(PF)+ degenerate pearlite(DP)+acicular ferrite(AF)'and refined by Mg treatment.The strength of experimental steels is improved with Mg addition.In industrial experiments,the fatigue limit of Mg-treated steels is greater than 460 MPa,while the fatigue limit of Ca-treated steels is about 450 MPa.In addition,the fatigue life of Mg-treated steels is generally higher than that of Ca-treated steels under the condition that the stress is greater than the fatigue limit.In laboratory experiments,the contents of Nb and Ti are reduced while Mg content in steel is 18×10-6,the strength of the wheel steel is close to the reference steel.Therefore,the project to reducing production cost by taking advantage of the microalloy role of Mg is feasible.
引文
[1]孔猛,李瑞瑾,王艳丽,等.乘用车钢制车轮发展方向[J].汽车零部件,2009(3):68.(Kong M,Li R J,Wang Y L,et al.Development direction of passenger car steel wheels[J].Automobile Parts,2009(3):68.)
    [2]Krewerth D,Lippmann T,Weidner A,et al.Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime[J].International Journal of Fatigue,2015,84:40.
    [3]Zhu M L,Xuan F Z.Fatigue crack initiation potential from defects in terms of local stress analysis[J].Chinese Journal of Mechanical Engineering,2014,27(3):496.
    [4]Sarma D S,Karasev A V,Jonsson P G.On the role of nonmetallic inclusions in the nucleation of acicular ferrite in steels[J].ISIJ International,2009,49(7):1063.
    [5]Yang J,Yamasaki T,Kuwabara M.Behavior of inclusions in deoxidation process of molten steel with in-situ produced mg vapor[J].ISIJ International,2007,47(5):699.
    [6]Takata R,Yang J,Kuwabara M.Characteristics of inclusions generated during Al-Mg complex deoxidation of molten steel[J].ISIJ International,2007,47(10):1379.
    [7]Min Y,Li X B,Yu Z,et al.Characterization of the acicular ferrite in al-deoxidized low-carbon steel combined with Zr and Mg additions[J].Steel Research International,2016,87(11):1503.
    [8]李小兵,闵义,刘承军,等.M(M=Mg,Zr,Mg-Zr)添加对FH40船板钢组织与力学性能影响[J].中南大学学报:自然科学版,2015,46(10):3586.(Li X B,Min Y,Liu C J,et al.Effect of M(M=Mg,Zr,MgZr)addition on microstructure and mechanical properties in FH40 ship plates steel[J].Journal of Central South University,2015,46(10):3586.)
    [9]Kojima A,Kiyose A,Uemori R,et al.Super high HAZ toughness technology with fine microstructure imparted by fine particles[J].Nippon Steel Technical Research,2004(90):2.
    [10]Kimura K,Fukumoto S,Shigesato G I,et al.Effect of Mg addition on equiaxed grain formation in ferritic stainless steel[J].ISIJ International,2013,53(12):2167.
    [11]Yang W,Zhang L F,Wang X H,et al.Characteristics of inclusions in low carbon Al-killed steel during ladle furnace refining and calcium treatment[J].ISIJ International,2013,53(8):1401.
    [12]Kimura S,Nakajima K,Mizoguchi S.Behavior of aluminamagnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels[J].Metallurgical and Materials Transactions,2001,32B(1):79.
    [13]Suito H,Ohta H.Characteristics of particle size distribution in early stage of deoxidation[J].ISIJ International,2006,46(1):33.
    [14]王慧华,徐英君,郝月莹,等.界面理论在夹杂物尺寸演变中的作用[J].钢铁研究学报,2016,28(5):41.(Wang H H,Xu Y J,Hao Y Y,et al.Effect of interface theory on evolution of inclusion size in liquid steels[J].Journal of Iron and Steel Research,2016,28(5):41.)
    [15]李小兵,闵义,王博,等.Mg和Zr对FH40级船板钢连续冷却转变曲线的影响[J].重庆大学学报,2015,38(2):105.(Li X B,Min Y,Wang B,et al.Effect of Mg and Zr addition on the continuous cooling transformation of the FH40shipbuilding steel[J].Journal of Chongqing University,2015,38(2):105.)
    [16]李文卿.控冷低碳钢珠光体形貌与退化机制[J].钢铁,1991,26(10):30.(Li W Q.Morphology and degeneration mechanism of pearlite in controlled-cooled low-carbon steel[J].Iron and Steel,1991,26(10):30.)
    [17]王中学,王博,杜益,等.Ti含量对X65管线钢组织与力学性能的影响[J].武汉科技大学学报,2014,37(5):326.(Wang Z X,Wang B,Du Y,et al.Effect of titanium content on the microstructure and mechanical properties of X65pipeline steel[J].Journal of Wuhan University of Science and Technology,2014,37(5):326.)
    [18]方琪,孙伟,赵德文,等.分段冷却工艺对低碳钢中板力学性能的影响[J].钢铁,2009,44(11):87.(Fang Q,Sun W,Zhao D W,et al.Influence of subsection cooling process on mechanical properties of low carbon medium plate[J].Iron and Steel,2009,44(11):87.)
    [19]Gao X Z,Yang S F,Li J S,et al.Effects of MgO nanoparticle additions on the structure and mechanical properties of continuously cast steel billets[J].Metallurgical and Materials Transactions,2016,47A(1):461.
    [20]Wen B,Song B,Pan N,et al.Effect of SiMg alloy on inclusions and microstructures of 16Mn steel[J].Ironmaking and Steelmaking,2011,38(8):577.
    [21]Gregg J M,Bhadeshia H K D H.Solid-state nucleation of acicular ferrite on minerals added to molten steel[J].Acta Materialia,1997,45(2):739.
    [22]万响亮,李光强,吴开明.低合金高强钢针状铁素体组织特征和形成机理[J].钢铁研究学报,2016,28(6):1.(Wan X L,Li G Q,Wu K M.Microstructure characteristics and formation mechanism of acicular ferrite in high-strength low-alloy steels[J].Journal of Iron and Steel Research,2016,28(6):1.)
    [23]吴开明,李自刚.低碳微合金钢中的晶内铁素体及组织控制[J].钢铁研究学报,2007,19(10):1.(Wu K M,Li Z G.Intragranular ferrite and microstructure control in low carbon microalloyed steels[J].Journal of Iron and Steel Research,2007,19(10):1.)
    [24]Sun Q,Di H S,Li J C,et al.A comparative study of the microstructure and properties of 800 MPa microalloyed C-Mn steel welded joints by laser and gas metal arc welding[J].Materials Science and Engineering,2016,669A:150.
    [25]Choi I C,Kim Y J,Wang Y M,et al.Nanoindentation behavior of nanotwinned Cu:influence of indenter angle on hardness,strain rate sensitivity and activation volume[J].Acta Materialia,2013,61(19):7313.
    [26]习小军,赖朝彬,李京社,等.钇基稀土对E36钢板显微组织及冲击性能的影响[J].工程科学学报,2017,39(2):244.(Xi X J,Lai C B,Li J S,et al.Effect of Y-base rare earth on the microstructure and impact toughness of E36steel plate[J].Chinese Journal of Engineering,2017,39(2):244.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700