淬火工艺对铜沉淀强化UHS钢组织性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of quenching process on microstructure and mechanical properties of Cu precipitated hardened ultra-high strength steel
  • 作者:李振团 ; 柴锋 ; 杨才福 ; 罗小兵 ; 苏航
  • 英文作者:LI Zhen-tuan;CHAI Feng;YANG Cai-fu;LUO Xiao-bing;SU Hang;Institute of Structural Steels,Central Iron and Steel Research Institute;
  • 关键词:超高强钢 ; 淬火工艺 ; 组织 ; 铜沉淀硬化
  • 英文关键词:ultra-high strength steel;;quenching;;microstructure;;Cu precipitated hardened
  • 中文刊名:GANT
  • 英文刊名:Iron & Steel
  • 机构:钢铁研究总院工程用钢研究所;
  • 出版日期:2019-06-15
  • 出版单位:钢铁
  • 年:2019
  • 期:v.54
  • 语种:中文;
  • 页:GANT201906012
  • 页数:7
  • CN:06
  • ISSN:11-2118/TF
  • 分类号:85-91
摘要
超高强度钢不仅可以降低海洋装备本身质量,而且节约能源,但这类钢应用过程中要求具有良好的强韧性匹配,而淬火工艺显著影响其后续的相变和性能。采用Thermo-Calc软件、光学显微镜、扫描电镜以及透射电镜等研究了淬火工艺对低碳(w(C)<0.05%)铜沉淀硬化超高强海工钢组织性能的影响。结果表明,910℃淬火、450℃时效处理后峰值硬度达到386HV,700℃时效后空冷可得到部分二次马氏体组织,峰值硬度为357HV。525℃以下时效,富铜相析出的平均半径约为5nm,产生较高的强化增量。820~910℃淬火,随着淬火温度降低,细小的(Nb,Ti)C粒子能够有效抑制奥氏体晶粒的长大,细化晶粒和马氏体板条块,同时基体中小角度界面密度增加,强韧性提高。其中820℃淬火强度最高达到1 109MPa,-80℃V型冲击功为91J。
        High toughness and ultra high strength marine engineering steel can reduce the weight of marine equipment itself and save energy,but it requires good strength-toughness matching for this kind of steel application,and quenching process significantly affects its subsequent phase transformation and mechanical property.Effects of quenching process on the microstructure and mechanical properties of Cu-bearing ultra-high strength marine engineering steel were investigated depending on low carbon(w(C)<0.05%)design by optical microscopy,scanning electron microscopy and transmission electron microscopy.The results showed that the highest peak hardness was386 HV at 450℃ aging after 910℃ quenching,and the partial secondary martensite microstructure was attained at700℃ aging by air cooling,and the peak hardness was 357 HV.The average precipitation radius of the copper-rich phase was around 5 nm under 525℃aging,which gave rise to a higher strengthening increment.When quenched at820-910℃,grains and martensite lath blocks of Cu-bearing steel were refined with decreasing quenching temperature,which improved grain boundary density of low angle in the matrix,resulting in the increment of strength and toughness.The highest strength reached 1 109 MPa at 820℃ quenching,and-80℃impact toughness was 91 J.
引文
[1]张中武.高强度低合金钢(HSLA)的研究进展[J].中国材料进展,2016,35(2):141.(ZHANG Zhong-wu.Research development of high strength low alloy(HSLA)steels[J].Materials China,2016,35(2):141.)
    [2]杨婷,苏航,罗小兵,等.高强度船体钢淬火工艺下截面组织与性能均匀性[J].钢铁研究学报,2017,29(7):583.(YANG Ting,SU Hang,LUO Xiao-bing,et al.Cross section microstructure and homogeneity of mechanical properties of as quenched high strength ship steel[J].Journal of Iron and Steel Research,2017,29(7):583.)
    [3] Divya Jain,Dieter Isheim,Allen H Hunter,et al.Multicomponent high-strength low-alloy steel precipitation-strengthened by sub-nanometric Cu precipitates and M2C carbides[J].Metallurgical Transactions A,2016,14:93.
    [4] Kapoor M,Isheim D,Vaynman S,et al.Effects of increased alloying element content on NiAl-type precipitate formation,loading rate sensitivity,and ductility of Cu-and NiAl-precipitation-strengthened ferritic steels[J].Acta Materialia,2016,104:166.
    [5] Mandal S,Tewary N K,Ghosh S K,et al.Thermo-mechanically controlled processed ultrahigh strength steel:Microstructure,texture and mechanical properties[J].Materials Science and Engineering A,2016,663:126.
    [6] Ghosh A,Das S,Chatterjee S.Aging behavior of a Cu-bearing ultrahigh strength steel[J].Materials Science and Engineering A,2008,486(1/2):152.
    [7]胡锋,王同良,车马俊,等.特厚超高强海工钢表面回火马氏体组织对冲击韧性的影响[J].材料热处理学报,2017,38(10):80.(HU Feng,WANG Tong-liang,CHE Ma-jun,et al.Effect of tempered martensite at surface on impact toughness of extra-thick ultra-high strength marine steel[J].Transactions of Materials and Heat Treatment,2017,38(10):80.)
    [8] PAN Tao,ZHU Jing,YANG Cai-fu,et al.Kinetics simulation and experimental observation of fine microstructure of9%Ni cryogenic steel processed by QLT heat treatment[J].Chinese Science Bulletin,2014,59(15):1765.
    [9]侯家平,潘涛,朱莹光,等.临界淬火工艺对9Ni低温钢力学性能及精细组织的影响[J].材料热处理学报,2014,35(10):88.(HOU Jia-ping,PAN Tao,ZHU Ying-guang,et al.Effect of inter-critical quenching process on mechanical property and microstructure of 9Ni cryogenic steel[J].Transactions of Materials and Heat Treatment,2014,35(10):88.)
    [10] Dere E G,Sharma H,Petrov R H,et al.Effect of niobium and grain boundary density on the fire resistance of Fe-C-Mn steel[J].Scripta Materialia,2013,68(8):651.
    [11] Russell K C,Brown L M.A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system[J].Acta Metallurgica,1972,20(7):969.
    [12] Fine M E,Isheim D.Origin of copper precipitation strengthening in steel revisited[J].Scripta Materialia,2005,53(1):115.
    [13] Gladman T.On the theory of the effect of precipitate particles on grain growth in metals[J].Proc R Soc Lond A,1966,294(1438):298.
    [14]吴斯,李秀程,张娟,等.铌微合金化对高铁车轮钢奥氏体形核和长大的影响[J].钢铁,2015,50(7):100.(WU Si,LI Xiu-cheng,ZHANG Juan,et al.Influence of Nb micro-alloying on austenite nucleation and growth in high speed railway wheels steel[J].Iron and Steel,2015,50(7):100.)
    [15]陈润农,李昭东,张明亚,等.铌微合金化极低屈服点钢的组织与性能[J].钢铁,2019,54(1):63.(CHEN Run-nong,LI Zhao-dong,ZHANG Ming-ya,et al.Microstructure and properties of Nb microalloyed ultra low yield point steel[J].Iron and Steel,2019,54(1):63.)
    [16]阳开生.热处理及NbVN微合金化对船板钢组织性能的影响[J].中国冶金,2017,27(10):34.(YANG Kai-sheng.Effect of heat treatment process and NbVN microalloying on mechanical property and microstructure of grade ship plate steel[J].China Metallurgy,2017,27(10):34.)
    [17] WANG C,WANG M,SHI J,et al.Effect of microstructural refinement on the toughness of low carbon martensitic steel[J].Scripta Mater,2008,58(6):492.
    [18] ZHOU T,YU H,WANG S.Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate:EBSD analysis and microscopic fracture mechanism[J]. Materials Science and Engineering:A,2016,658:150.
    [19]余永宁.金属学原理[M].北京:冶金工业出版社,2013.(YU Yong-ning.Metallography Principle[M].Beijing:Metallurgical Industry Press,2013.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700