Mg含量对Al-Mg合金应力腐蚀行为的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Mg content on stress corrosion behavior of Al-Mg alloy
  • 作者:杨玉洁 ; 王旭 ; 吴明
  • 英文作者:Yang Yujie;Wang Xu;Wu Ming;School of Petroleum Engineering,Liaoning Shihua University;School of Mechanical Engineering,Liaoning Shihua University;
  • 关键词:Al-Mg合金 ; Mg含量 ; 腐蚀敏感性 ; 应力腐蚀开裂
  • 英文关键词:Al-Mg alloy;;Mg content;;corrosion susceptibility;;stress corrosion cracking
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:辽宁石油化工大学石油天然气工程学院;辽宁石油化工大学机械工程学院;
  • 出版日期:2019-03-25
  • 出版单位:金属热处理
  • 年:2019
  • 期:v.44;No.499
  • 基金:国家自然科学基金(51574147);; 辽宁省自然科学基金(201602474)
  • 语种:中文;
  • 页:JSRC201903014
  • 页数:6
  • CN:03
  • ISSN:11-1860/TG
  • 分类号:71-76
摘要
采用电化学极化曲线、交流阻抗谱和慢应变速率拉伸试验结合扫描电镜观察等方法研究了不同Mg含量的Al-Mg合金的应力腐蚀开裂(SCC)行为。结果表明,随着Mg含量的增加,腐蚀电位降低,而腐蚀电流密度(i_(corr))显著增加。Al-2.5Mg合金在3种合金中表现出最低的i_(corr),与交流阻抗结果相对应。在慢拉伸试验中,Al-6.3Mg合金显示出最差的延展性,其断口形貌表现出明显的脆性断裂特征,应力腐蚀开裂敏感性最大。
        The stress corrosion cracking (SCC) behavior of Al-Mg alloys with different Mg contents was investigated by electrochemical polarization curves,electrochemical impedance spectroscopy and slow strain rate tensile tests combined with scanning electron microscopy.The results show that with the increase of Mg content,the corrosion potential decreases and the corrosion current density (i_(corr)) increases significantly. The Al-2. 5 Mg alloy exhibits the lowest i_(corr) in the three alloys,corresponding to the AC impedance results. In the slow tensile test,the Al-6. 3 Mg alloy shows the worst ductility and the largest SCC susceptibility,with brittle fracture morphology.
引文
[1]Chen R Y,Lai C C.Effects of microstructural evolution on the intergranular corrosion and stress corrosion cracking susceptibility of5083-H116 alloys[J].Journal of Taiwan Society of Naval Architects and Marine Engineers,2013,32(4):179-185.
    [2]Lyndon J A,Gupta R K,and Gibson M A.Electrochemical behaviour of theβ-phase intermetallic(Mg2Al3)as a function of pH as relevant to corrosion of aluminum-magnesium alloys[J].Corrosion Science,2013,70:290-293.
    [3]吴沛沛,田爱琴,段浩伟,等.晶粒尺寸对Al-Zn-Mg铝合金应力腐蚀敏感性的影响[J].失效分析与预防,2016,11(1):6-12.Wu Peipei,Tian Aiqin,Duan Haowei,et al.Effect of grain size on stress corrosion cracking susceptibility of an Al-Zn-Mg alloy[J].Failure Analysis and Prevention,2016,11(1):6-12.
    [4]刘震.2A14铝合金焊接接头应力腐蚀行为研究[D].哈尔滨:哈尔滨工业大学,2016.
    [5]王月,吴庭翱.含钪Al-Mg合金的抗应力腐蚀和剥落腐蚀性能研究[J].中国腐蚀与防护学报,2005,25(4):218-221.Wang Yue,Wu Ting’ao.Stress corrosion cracking and exfoliation corrosion resistance of Al-Mg alloy with addition of scandium[J].Journal of Chinese Society for Corrosion and Protection,2005,25(4):218-221.
    [6]杨玉洁,吴明,王旭,等.铝合金应力腐蚀开裂的影响机制[J].轻合金加工技术,2017,45(10):5-10.Yang Yujie,Wu Ming,Wang Xu,et al.Influence mechanism on stress corrosion behavior of aluminum alloy[J].Light Alloy Fabrication Technology,2017,45(10):5-10.
    [7]徐国富,段雨露,钱健,等.Al-Mg-Mn-Sc-Zr合金搅拌摩擦焊接头显微组织、力学性能及腐蚀性能[J].中国有色金属学报,2017,27(2):225-233.Xu Guofu,Duan Yulu,Qian Jian,et al.Microstructure,mechanical properties and corrosion properties of friction stir welded Al-Zn-Mg-ScZr alloy[J].The Chinese Journal of Nonferrous Metals,2017,27(2):225-233.
    [8]Ricker R E,Lee E U,Taylor R,et al.Chloride ion activity and susceptibility of Al alloys 7075-T6 and 5083-H131 to stress corrosion cracking[J].Metallurgical and Materials Transactions A,2013,44(3):1353-1364.
    [9]王彬彬,王振尧,曹公望,等.2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为[J].金属学报,2014,50(1):49-56.Wang Binbin,Wang Zhenyao,Cao Gongwang,et al.Localized corrosion of aluminum alloy 2024 exposed to salt lake atmospheric environment in western china[J].Acta Metallurgica Sinica,2014,50(1):49-56.
    [10]冯春,刘志义,宁爱林,等.RRA处理对超高强铝合金抗应力腐蚀性能的影响[J].中南大学学报(自然科学版),2006,37(6):1054-1059.Feng Chun,Liu Zhiyi,Ning Ailin,et al.Effect of retrogression and reaging treatment on stress corrosion c racking resistance of super-high strength aluminum alloy[J].Journal of Central South University(Science and Technology),2006,37(6):1054-1059.
    [11]谢飞,王丹,吴明,等.库尔勒土壤模拟溶液中X80钢焊接接头的应力腐蚀开裂行为[J].材料热处理学报,2015,36(6):206-210.Xie Fei,Wang Dan,Wu Ming,et al.Stress corrosion cracking behavior of X80 steel welded joint in Ku'erle simulated soil solution[J].Transactions of Materials and Heat Treatment,2015,36(6):206-210.
    [12]Syed A K,Zhang X,Moffatt J E,et al.Effect of temperature and thermal cycling on fatigue crack growth in aluminum reinforced with GLARE bonded crack retarders[J].International Journal of Fatigue,2017,98:53-61.
    [13]Hao J B,Li X D,Mu Z T.Fatigue behavior of thick center cracked aluminum plates repaired by two-sided composite patching[J].Materials and Design,2015,88:331-335.
    [14]Buczynski J,Kelly R.Electrochemical characterization of theβ-phase(Al3Mg2)in 5xxx aluminum alloys[J].Journal of Immunoassay and Immunochemistry,2011,35(4):428-441(14).
    [15]Yi G,Cullen D A,Littrell K C,et al.Characterization of Al-Mg alloy aged at low temperatures[J].Metallurgical and Materials Transactions A,2017,48:1-11.
    [16]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社.2002.
    [17]Liu M,Schmutz P,Zanna S,et al.Electrochemical reactivity,surface composition and corrosion mechanisms of the complex metallic alloy Al3Mg2[J].Corrosion Science,2010,52:562-578.
    [18]李念奎,崔建忠.Al-Zn-Mg-Cu系合金组织对性能的影响[J].轻合金加工技术,2008,36(1):5-10.
    [19]Scott B E.The role of stress in the corrosion cracking of aluminum alloys[D].Monterey California:Naval Postgraduate School,2013.
    [20]Goswami R,Spanos G,Pao P S,et al.Microstructural Evolution and Stress Corrosion Cracking Behavior of Al-5083[J].Metallurgical and Materials Transactions A,2011,42(2):348-355.
    [21]Dutta I.Corrosion behavior of a P130x graphite fiber reinforced 6063aluminum composite laminate in aqueous environments[J].Journal of the Electrochemical Society,1991,138(11):3199-3209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700