氢化物气相外延生长高质量GaN膜生长参数优化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of the parameters for growth high-qulity GaN film by hydride vapor phase epitaxy
  • 作者:张李骊 ; 刘战辉 ; 修向前 ; 张荣 ; 谢自力
  • 英文作者:Zhang Li-Li;Liu Zhan-Hui;Xiu Xiang-Qian;Zhang Rong;Xie Zi-Li;Key Laboratory of Advanced Photonic and Electronic Materials,School of Electronic Science and Engineering,Nanjing University;School of Physics and Optoelectronic Engineering,Nanjing University of Information Science and Technology;
  • 关键词:氮化镓 ; 氢化物气相外延 ; 低温成核层
  • 英文关键词:gallium nitride;;hydride vapor phase epitaxy;;low temperature nucleation layer
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:南京大学电子科学与工程学院江苏省光电信息功能材料重点实验室;南京信息工程大学物理与光电工程学院;
  • 出版日期:2013-10-23
  • 出版单位:物理学报
  • 年:2013
  • 期:v.62
  • 基金:国家重点基础研究发展计划(批准号:2011CB301900,2012CB619304);; 国家自然科学基金(批准号:60990311,60906025,61176063)、国家自然科学基金青年科学基金(批准号:51002079,21203098);; 国家高技术研究发展计划(批准号:2011AA03A103)资助的课题~~
  • 语种:中文;
  • 页:WLXB201320060
  • 页数:10
  • CN:20
  • ISSN:11-1958/O4
  • 分类号:436-445
摘要
系统研究了低温成核层生长时间、高温生长时的V/III比以及生长温度对氢化物气相外延生长GaN膜晶体质量的影响.研究发现合适的低温成核层为后续高温生长提供成核中心,并能有效降低外延膜与衬底间的界面自由能,促进成核岛的横向生长;优化的V/III比和最佳生长温度有利于降低晶体缺陷密度,促进横向生长,增强外延膜的二维生长.利用扫描电子显微镜、原子力显微镜、高分辨X射线衍射、低温光致发光谱和室温拉曼光谱对优化条件下生长的GaN外延膜进行了结构和光电特性表征.测试结果表明,膜表面平整光滑,呈现二维生长模式表面形貌;(002)和(102)面摇摆曲线半高宽分别为317和343 arcsec;低温光致发光谱中近带边发射峰为3.478 eV附近的中性施主束缚激子发射峰,存在11 meV的蓝移,半高宽为10 meV,并且黄带发光强度很弱;常温拉曼光谱中E2(high)峰发生1.1 cm 1蓝移.结果表明,优化条件下生长的GaN外延膜具有良好的晶体质量和光电特性,但GaN膜中存在压应力.
        In this paper, the processing parameters of growing GaN epilayer by hydride vapor phase epitaxy are optimized. The influences of the low-temperature(LT) nucleation layer growth time, V/III precursor ratio and the growth temperature on GaN layer are investigated by the high-resolution X-ray diffraction(HRXRD) signature for the asymmetric and symmetric reflections. The investigation finds that the LT-nucleation layer not only supplies the nucleation centers having good crystal quality, but also promotes the lateral growth of the sequent high temperature(HT) growth. The optimal LT nucleation layer growth time, V/III precursor ratio and the growth temperature can effectively enhance lateral growth to reduce the crystal defects and are favorable to converting the growth mechanism from threedimension to two-dimension in HT growth. The structural and optoelectronic properties of the as-grown GaN layer with a thickness of 15 μm at the optimal parameters are studied by scanning electron microcopy, atomic force microscopy(AFM), HRXRD, Raman spectra, and photoluminescence(PL) measurements. X-ray rocking curves show that the full widths at half maximum of (002) and(102) are 317 and 343 arcsec, respectively. The surface roughness(rms: root mean square) is 0.334 nm detected using AFM. These characteristics show that the sample has good lattice quality and smooth surface morphology. In PL spectrum, the near band edge emission is dominated by emission from excitons bound to neutral donors(D0X) near 3.478 eV with 11 meV blue-shift and the yellow band emission is very weak. The results indicate that the GaN layer has good crystal quality and excellent optoelectronic properties,but a little biaxial in-plane compressive strain also exists in it due to the lattice and thermal mismatch.
引文
[1]Nakamura S,Senoh M,Iwasa N,Nagahama S,Yamada T,Mukai T1995 Jpn.J.Appl.Phys.34 L1332
    [2]Zhang J P,Chitnis A,Adivarahan V,Wu S,Mandavilli V,Pachipulusu R,Shatalov M,Simin G,Yang J W,Khan M A 2002 Appl.Phys.Lett.81 4910
    [3]Andre Y,Trassoudaine A,Tourret J,Cadoret R,Gil E,Castelluci D,Aoude O,Disseix P 2007 J.Cryst.Growth 306 86
    [4]Lee D Y,Han S H,Lee D J,Lee J W,Kim D J,Kim Y S,Kim S T,Leem J Y 2013 Appl.Phys.Lett.102 011115
    [5]Mei J,Liu R,Ponce F A,Omiya H,Mukai T 2007 Appl.Phys.Lett.90171922
    [6]Maruska H P,Tietjen J J 1969 Appl.Phys.Lett.15 327
    [7]Hageman P R,Kirilyuk V,Corbeek W H M,Weyher J L,Lucznik B,Bockowski M,Porowski S,Müller S 2003 J.Cryst.Growth 255 241
    [8]Ishibashi A,Kidoguchi I,Sugahara G,Ban Y 2000 J.Cryst.Growth221 338
    [9]Tourret J,Gourmala O,Andre′Y,Trassoudaine A,Gil E,Castelluci D,Cadoret R 2009 J.Cryst.Growth 311 1460
    [10]Nam O H,Bremser M D,Zheleva T S,Davis R F 1997 Appl.Phys.Lett.71 2638
    [11]Zheleva T S,Nam O H,Bremser M D,Davis R F 1997 Appl.Phys.Lett.71 2472
    [12]Akasaki I,Amano H,Koide Y,Hiramatsu K,Sawaki N 1989 J.Cryst.Growth 98 209
    [13]Sumiya M,Ogusu N,Yotsuda Y,Itoh M,Fuke S,Nakamura T,Mochizuki S,Sano T,Kamiyama S,Amano H,Akasaki I 2003 J.Appl.Phys.93 1311
    [14]Xue J S,Hao Y,Zhang J C,Ni J Y 2010 Chin.Phys.B 19 057203
    [15]Lin Z Y,Zhang J C,Zhou H,Li X G,Meng F N,Zhang L X,Ai S,Xu S R,Zhao Y,Hao Y 2012 Chin.Phys.B 21 126804
    [16]Ni Y Q,He Z Y,Zhong J,Yao Y,Yang F,Xiang P,Zhang B J,Liu Y2013 Chin.Phys.B 22 088104
    [17]Peng D S,Chen Z G,Tan C C 2012 Chin.Phys.B 21 128101
    [18]Zhao W,Wang L,Wang J X,Luo Y 2011 Chin.Phys.B 20 076101
    [19]Qiu K,Zhong F,Li X H,Yin Z J,Ji C J,Han Q F,Chen J R,Cao X C,Wang Y Q 2007 Chin.Phys.16 2082
    [20]Zhou A,Xiu X Q,Zhang R,Xie Z L,Hua X M,Liu B,Han P,Gu S L,Shi Y,Zheng Y D 2013 Chin.Phys.B 22 017801
    [21]Du Y H,Wu J J,Luo W K,John G,Han T,Tao Y B,Yang Z J,Yu T J,Zhang G Y 2011 Chin.Phys.B 20 098101
    [22]Wang L,Wang J X,Zhao W,Zou X,Luo Y 2010 Chin.Phys.B 19076803
    [23]Chen Z,Yang W,Liu L,Wan C H,Li L,He Y F,Liu N Y,Wang L,Li D,Chen W H,Hu X D 2012 Chin.Phys.B 21 108505
    [24]Jiang R,Lu H,Chen D J,Ren F F,Yan D W,Zhang R,Zheng Y D2013 Chin.Phys.B 22 047805
    [25]Chen X L,Kong F M,Li K,Gao H,Yue Q Y 2013 Acta Phys.Sin.62017805(in Chinese)[陈新莲,孔凡敏,李康,高晖,岳庆炀2013物理学报62 017805]
    [26]Le L C,Zhao D G,Wu L L,Deng Y,Jiang D S,Zhu Jian J,Liu Z S,Wang H,Zhang S M,Zhang B S,Yang H 2011 Chin.Phys.B 20127306
    [27]Martin D,Napierala J,Ilegems M,Butte′R,Grandjean N 2006 Appl.Phys.Lett.88 241914
    [28]Hersee S D,Ramer J,Zheng K,Kranenberg C,Malloy K,Banas M,Goorsky M 1995 J.Electron.Mater.24 1519
    [29]Wickenden A E,Wickenden D K,Kistenmacher T J 1994 J.Appl.Phys.75 5367
    [30]Meng F Y,Han I,McFelea H,Lindow E,Bertram R,Werkhoven C,Arena C,Mahajan S 2011 J.Cryst.Growth 327 13
    [31]Heying B,Wu X H,Keller S,Li Y,Kapolnek D,Keller B P,Denbaars S P,Speck J S 1996 Appl.Phys.Lett.68 643
    [32]Ruterana P,Albrecht M,Neugebauer J 2003 Nitride Semiconductors:Handbook on Materials and Devices(New York:Wiley-VCH)p49
    [33]ucznik B,Pastuszka B,Grzegory I,Boc′kowski M,Kamler G,Staszewska E L,Porowski S 2005 J.Cryst.Growth 281 38
    [34]Ito T,Sumiya M,Takano Y,Ohtsuka K,Fuke S 1999 Jpn.J.Appl.Phys.38 649
    [35]Kim S Y,Lee H J,Park S H,Lee W,Jung M N,Fujii K,Goto T,Sekiguchi T,Chang J,Kil G,Yao T 2010 J.Cryst.Growth 312 2150
    [36]Freitas Jr J A 2010 J.Phys.D:Appl.Phys.43 073001
    [37]Ueda T,Yuri M,Harris Jr J S 2011 Jpn.J.Appl.Phys.50 085501
    [38]Solomon G S,Miller D J,Ramsteiner M,Trampert A,Brandt O,Ploog K H 2005 Appl.Phys.Lett.87 181912
    [39]Paskova T,Valcheva E,Birch J,Tungasmita S,PPersson P O A,Beccard R,Heuken M,Monemar M 2000 J.Appl.Phys.88 5729
    [40]Wood D A,Parbrook P J,Lynch R J,Lada M,Cullis A G 2001 Phys.Stat.Sol.A 188 641
    [41]Darakchieva V,Monemar B,Usui A 2007 Appl.Phys.Lett.91 031911
    [42]Jain S C,Willander M,Narayan J,Overstraeten R V 2000 J.Appl.Phys.87 965
    [43]Kisielowski C,Kruger J,Ruvimov S,Suski T,Ager III J W,Jones E,Liliental-Weber Z,Rubin M,Weber E R,Bremser M D,Davis R F 1996Phys.Rev.B 54 17745
    [44]Monemar B 2001 J.Phys.:Condens.Matter.13 7011
    [45]Oh E,Lee S K,Park S S,Lee K Y,Song I J,Han J Y 2001 Appl.Phys.Lett.78 273
    [46]Davydov V Y,Kitaev Y E,Goncharuk I N,Smirnov A N,Graul J,Semchinova O,Uffmann D,Smirnov M B,Mirgorodsky A P,Evarestov R A 1998 Phys.Rev.B 58 12899

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700