新型Ti/TiO_xH_y/Sb-SnO_2电极上苯胺电化学氧化反应(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical oxidation of aniline by a novel Ti/TiO_xH_y/Sb-SnO_2 electrode
  • 作者:李晓良 ; 徐浩 ; 延卫
  • 英文作者:Xiaoliang Li;Hao Xu;Wei Yan;Department of Environmental Science and Engineering,State Key Laboratory of Multiphase flow in Power Engineering,Xi'an Jiaotong University;
  • 关键词:苯胺 ; Ti/TiO_xH_y/Sb-SnO_2电极 ; 电化学氧化 ; 氯离子 ; 三维反应器
  • 英文关键词:Aniline;;Ti/TiO_xH_y/Sb-SnO_2 electrode;;Electrochemical oxidation;;Chloride ions;;Three-dimensional reactor
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:西安交通大学环境科学与工程系动力工程多相流国家重点实验室;
  • 出版日期:2016-11-15
  • 出版单位:催化学报
  • 年:2016
  • 期:v.37
  • 基金:supported by the National Natural Science Foundation of China(21507104);; the Fundamental Research Funds for the Central Universities of China~~
  • 语种:英文;
  • 页:CHUA201611008
  • 页数:11
  • CN:11
  • ISSN:21-1601/O6
  • 分类号:70-80
摘要
苯胺是一种重要的化工原料,广泛应用于印染、制药、造纸、橡胶等领域.随着化工行业的迅速发展,苯胺的需求量越来越大.然而,苯胺毒性高,大量使用势必造成水体中苯胺浓度的升高,给人类健康及生态环境造成危害.因此,急需一种高效、洁净、经济的方法处理含苯胺废水.电化学氧化法比较新颖,相比传统废水处理方法,它具有高效、简单、清洁等优点,因此被应用于很多废水处理当中,但过多的能耗限制了其进一步广泛应用.阳极作为电化学氧化技术的核心部件,直接影响到电化学氧化反应性能.因此开发出一种高效、经济的阳极材料很有必要.此外,对苯胺降解条件的优化也同样重要.关于苯胺电化学氧化,已有的研究包括Pt电极、PbO_2电极和石墨电极等阳极材料.比较而言,Ti/Sb-SnO_2电极具有制备工艺简单,析氧过电位较高,材料廉价和电催化性能较强等优点.然而,它的稳定性仍有待提高.因此本文制备了一种高稳定性的Ti/TiO_xH_y/Sb-SnO_2电极,并用于处理苯胺废水.较为系统地研究了电流密度、苯胺初始浓度、pH、NaCl投加量及反应器类型对苯胺电催化氧化性能的影响,同时采用扫描电镜(SEM)、X射线衍射(XRD)和电化学测试对该电极进行了表征,并应用紫外-可见光谱、化学需氧量、电流效率及能耗对不同参数进行评定和优化.SEM及XRD结果表明,Ti/TiO_xH_y/Sb-SnO_2电极涂层覆盖比较完全、紧实,未出现裂缝的发生,因而有利于提高电极稳定性.循环伏安测试结果表明,此电极具备较高的析氧过电位(2.0 V vs Ag/AgCl)及电化学孔隙度(76.31%),因此有利于电极催化性能的提高.苯胺电化学氧化实验结果发现,该反应符合准一级动力学模型,且高电流密度、酸性环境、适当NaCl投加量(0.2 wt%)更有利于苯胺的降解.另外,Ti/TiO_xH_y/Sb-SnO_2电极在三维反应器中对苯胺的处理效果要远远好于在二维反应器中.可以看出,Ti/TiO_xH_y/Sb-SnO_2电极具有较好的处理苯胺性能,可为苯胺废水处理的应用提供了一定的理论指导.
        Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiO_xH_y/Sb-SnO_2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electrochemical measurements were used to characterize its morphology,crystal structure,and electrochemical properties.Removal of aniline by the Ti/TiO_xH_y/Sb-SnO_2electrode was investigated by ultraviolet-Visible spectroscopy and chemical oxygen demand(COD)analysis under different conditions,including current densities,initial concentrations of aniline,pH values,concentrations of chloride ions,and types of reactor.It was found that a higher current density,a lower initial concentration of aniline,an acidic solution,the presence of chloride ions(0.2wt%NaCl),and a three-dimensional(3D) reactor promoted the removal efficiency of aniline.Electrochemical degradation of aniline followed pseudo-first-order kinetics.The aniline(200 mL of 100mg·L~(-1)) and COD removal efficiencies reached 100%and 73.5%,respectively,at a current density of 20 mA·cm~(-2),pH of 7.0,and supporting electrolyte of 0.5 wt%Na_2SO_4 after 2 h electrolysis in a 3D reactor.These results show that aniline can be significantly removed on the Ti/TiO_xH_y/Sb-SnO_2electrode,which provides an efficient way for elimination of aniline from aqueous solution.
引文
[1]D.W.Kirk,H.Sharifian,F.R.Foulkes,J.Appl.Electrochem.,1985,15,285-292.
    [2]M.Ferreira,M.F.Pinto,I.C.Neves,A.M.Fonseca,O.S.G.P.Soares,J.J.M.órf?o,M.F.R.Pereira,J.L.Figueiredo,P.Parpot,Chem.Eng.J.,2015,260,309-315.
    [3]M.Mitadera,N.Spataru,A.Fujishima,J.Appl.Electrochem.,2004,34,249-254.
    [4]Q.Jin,Z.C.Hu,Z.F.Jin,L.Q.Qiu,W.H.Zhong,Z.Y.Pan,Bioresource Technol.,2012,117,148-154.
    [5]X.H.Qi,Y.Y.Zhuang,Y.C.Yuan,W.X.Gu,J.Hazard.Mater.,2002,90,51-62.
    [6]S.P.Kamble,S.B.Sawant,J.C.Schouten,V.G.Pangarkar,J.Chem.Technol.Biotechnol.,2003,78,865-872.
    [7]P.C.C.Faria,J.J.M.Orfao,M.F.R.Pereira,Chemosphere,2007,67,809-815.
    [8]B.Tanhaei,M.Pourafshari Chenar,N.Saghatoleslami,M.Hesampour,T.Laakso,M.Kallioinen,M.Sillanp??,M.M?ntt?ri,Sep.Purif.Technol.,2014,124,26-35.
    [9]X.Wang,W.M.Huang,H.T.Li,X.N.Zhang,H.Y.Lu,H.B.Lin,Chem.Res.Chin.Univ.,2010,26,991-995.
    [10]J.Anotai,M.C.Lu,P.Chewpreecha,Water Res.,2006,40,1841-1847.
    [11]C.C.Su,E.D.Pagaling,G.L.Peralta,M.C.Lu,Environ.Progr.Sus-tain.,2014,33,410-418.
    [12]M.Panizza,G.Cerisola,Chem.Rev.,2009,109,6541-6569.
    [13]G.H.Chen,Sep.Purif.Technol.,2004,38,11-41.
    [14]Q.F.Zhuo,S.B.Deng,B.Yang,J.Huang,G.Yu,Environ.Sci.Technol.,2011,45,2973-2979.
    [15]J.F.Niu,H.Lin,J.L.Xu,H.Wu,Y.Y.Li,Environ.Sci.Technol.,2012,46,10191-10198.
    [16]Y.H.Cui,X.Y.Li,G.H.Chen,Water Res.,2009,43,1968-1976.
    [17]H.Lin,J.Niu,S.Ding and L.Zhang,Water Res.,2012,46,2281-2289.
    [18]Y.Li,F.Wang,G.D.Zhou,Y.M.Ni,Chemosphere,2003,53,1229-1234.
    [19]M.Matsushita,H.Kuramitz I,S.Tanaka,Environ.Sci.Technol.,2005,39,3805-3810.
    [20]S.Karthikeyan,K.Viswanathan,R.Boopathy,P.Maharaja,G.Sekaran,J.Ind.Eng.Chem.,2015,21,942-950.
    [21]J.F.Niu,D.Maharana,J.L.Xu,Z.Chai,Y.P.Bao,J.Environ.Sci.,2013,25,1424-1430.
    [22]M.A.Quiroz,S.Reyna,J.L.Sánchez,J.Solid State Electrochem.,2003,7,277-282.
    [23]L.Xu,M.Li,W.Xu,Electrochim.Acta,2015,166,64-72.
    [24]J.F.Niu,Y.Li,E.X.Shang,Z.Xu,J.Z.Liu,Chemosphere,2016,146,526-538.
    [25]J.F.Niu,Y.P.Bao,Y.Li,Z.Chai,Chemosphere,2013,92,1571-1577.
    [26]D.Shao,X.L.Li,H.Xu,W.Yan,RSC Adv.,2014,4,21230-21237.
    [27]X.L.Li,D.Shao,H.Xu,W.Lv and W.Yan,Chem.Eng.J.,2016,285,1-10.
    [28]X.M.Chen,G.H.Chen,Electrochim.Acta,2005,50,4155-4159.
    [29]Y.Duan,Q.Wen,Y.Chen,T.G.Duan,Y.D.Zhou,Appl.Surf.Sci.,2014,320,746-755.
    [30]Y.Chen,H.Y.Li,W.J.Liu,Y.Tu,Y.H.Zhang,W.Q.Han,L.J.Wang,Chemosphere,2014,113,48-55.
    [31]R.Kotz,S.Stucki,B.Carcer,J.Appl.Electrochem.,1991,21,14-20.
    [32]L.K.Xu,J.D.Scantlebury,J.Electrochem.Soc.,2003,150,B288-B293.
    [33]W.L.Zhang,H.S.Kong,H.B.Lin,H.Y.Lu,W.M.Huang,J.Yin,Z.Q.Lin,J.P.Bao,J.Alloy.Compd.,2015,650,705-711.
    [34]T.Duan,Y.Chen,Q.Wen,Y.Duan,RSC Adv.,2014,4,57463-57475.
    [35]A.Kapa?ka,G.Fóti,C.Comninellis,J.Appl.Electrochem.,2007,38,7-16.
    [36]K.P.de Amorim,L.L.Romualdo,L.S.Andrade,Sep.Purif.Technol.,2013,120,319-327.
    [37]P.Ca?izares,J.García-Gómez,I.Fernández de Marcos,M.A.Ro-drigo,J.Lobato,J.Chem.Educat.,2006,83 1204-1207.
    [38]R.E.Palma-Goyes,F.L.Guzman-Duque,G.Penuela,I.Gonzalez,J.L.Nava,R.A.Torres-Palma,Chemosphere,2010,81,26-32.
    [39]E.Brillas,C.A.Martínez-Huitle,Appl.Catal.B,2015,166-167,603-643.
    [40]Y.Wang,Z.Shen,X.Chen,J.Hazard.Mater.,2010,178,867-874.
    [41]J.Zhao,C.Z.Zhu,J.Lu,C.J.Hu,S.C.Peng,T.H.Chen,Electrochim.Acta,2014,118,169-175.
    [42]H.An,H.Cui,W.Y.Zhang,J.P.Zhai,Y.Qian,X.C.Xie,Q.Li,Chem.Eng.J.,2012,209,86-93.
    [43]D.Reyter,D.Belanger,L.Roue,Water.Res.,2010,44,1918-1926.
    [44]Q.Li,Q.Zhang,H.Cui,L.Ding,Z.B.Wei,J.P.Zhai,Chem.Eng.J.,2013,228,806-814.
    [45]D.Rajkumar,B.J.Song,J.G.Kim,Dyes Pigments,2007,72,1-7.
    [46]G.F.Pereira,R.C.Rocha-Filho,N.Bocchi,S.R.Biaggio,Chem.Eng.J.,2012,198-199,282-288.
    [47]X.Y.Yu,J.R.Barker,J.Phys.Chem.A,2003,107,1313-1324.
    [48]F.L.Guzman-Duque,R.E.Palma-Goyes,I.Gonzalez,G.Penuela,R.A.Torres-Palma,J.Hazard.Mater.,2014,278,221-226.
    [49]W.Can,H.Yao-Kun,Z.Qing,J.Min,Chem.Eng.J.,2014,243,1-6.
    [50]C.Zhang,Y.H.Jiang,Y.L.Li,Z.X.Hu,L.Zhou,M.H.Zhou,Chem.Eng.J.,2013,228,455-467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700