基于应变能密度的X12CrMoWVNbN10-1-1钢的蠕变-疲劳寿命预测模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Novel Creep-Fatigue Life Prediction Model for X12CrMoWVNbN10-1-1 Steel Based on Cyclic Strain Energy Density
  • 作者:戴晨 ; 纪冬梅 ; 陈家佳 ; 吴臻茂 ; 任建兴 ; 朱全军
  • 英文作者:DAI Chen;JI Dongmei;CHEN Jiajia;WU Zhenmao;REN Jianxing;ZHU Quanjun;School of Energy and Mechanical Engineering, Shanghai University of Electric Power;Global Energy Interconnection Research Institute;
  • 关键词:蠕变-疲劳 ; 寿命预测 ; 应力控制 ; X12CrMoWVNbN10-1-1钢 ; 应变能密度
  • 英文关键词:creep-fatigue;;life prediction;;load-controlled condition;;X12CrMoWVNbN10-1-1 steel;;strain energy density
  • 中文刊名:DONG
  • 英文刊名:Journal of Chinese Society of Power Engineering
  • 机构:上海电力学院能源与机械工程学院;全球能源互联网研究院;
  • 出版日期:2019-02-15
  • 出版单位:动力工程学报
  • 年:2019
  • 期:v.39;No.290
  • 基金:国家电网科技资助项目(SGRI-WD-71-15-010)
  • 语种:中文;
  • 页:DONG201902013
  • 页数:6
  • CN:02
  • ISSN:31-2041/TK
  • 分类号:84-89
摘要
根据应力控制下对X12CrMoWVNbN10-1-1钢进行的蠕变-疲劳试验来验证基于应变能密度的蠕变-疲劳寿命预测模型,并对620℃下X12CrMoWVNbN10-1-1钢的弹性应变、塑性应变和蠕变应变进行分析。结果表明:在蠕变-疲劳交互作用下X12CrMoWVNbN10-1-1钢的损伤过程包括3个阶段;一次循环稳定阶段的平均应变能密度与总应变能密度成反比,而总应变能密度与蠕变-疲劳寿命成正比,可选择稳定阶段应变能密度的表达式来预测蠕变-疲劳寿命;在应力控制下X12CrMoWVNbN10-1-1钢的短时保载蠕变-疲劳试验同样可以预测长时保载的蠕变-疲劳寿命,意味着基于应变能密度的蠕变-疲劳寿命预测模型对于X12CrMoWVNbN10-1-1钢也适用。
        Load-controlled creep-fatigue(CF) tests were conducted for X12 CrMoWVNbN10-1-1 steel at 620 ℃ to verify the creep-fatigue life prediction model based on strain energy density, while an analysis was carried out on the creep strain, the elastic strain and the plastic strain characteristics of the steel. Results show that the process of X12 CrMoWVNbN10-1-1 steel under CF load condition consists of three stages. The strain energy density at stable stage is inversely proportional to the total strain energy density dissipated by X12 CrMoWVNbN10-1-1 steel, and the total strain energy density under different test conditions is proportional to the fatigue life, therefore the expression of the strain energy density at stable stage could be chosen to predict the fatigue life. The model obtained from the load-controlled CF test of X12 CrMoWVNbN10-1-1 steel with short holding time may be used to predict the fatigue life of the steel with long holding time, indicating that the life prediction model based on strain energy density is also applicable to X12 CrMoWVNbN10-1-1 steel.
引文
[1] 赵勇桃,董俊慧, 张韶慧, 等. P92钢高温拉伸断口形貌的研究[J]. 材料工程, 2015, 43(4): 85-91. ZHAO Yongtao, DONG Junhui, ZHANG Shaohui, et al. High-temperature tensile fracture morphology of P92 steel[J]. Journal of Materials Engineering, 2015, 43(4): 85-91.
    [2] 马明. 美国新的超临界机组考虑使用T/P92的原因[J]. 电力建设, 2006, 27(11): 79-80. MA Ming. The reasons for the use of T/P92 for the new supercritical unit in the United States[J]. Electric Power Construction, 2006, 27(11): 79-80.
    [3] 殷凤仕, 杨钢, 李茹, 等. X12CrMoWVNbN10-1-1耐热钢的组织和高温力学性能[J]. 材料热处理学报, 2012, 33(12): 72-75. YIN Fengshi, YANG Gang, LI Ru, et al. Microstructure and high temperature mechnical properties of X12CrMoWVNbN10-1-1 heatresistant steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(12): 72-75.
    [4] 蒋浦宁. 1 000 MW超超临界汽轮机高压外缸蠕变强度的分析[J]. 动力工程学报, 2013, 33(1): 11-16. JIANG Puning.Creep strength analysis on HP outer casing of a 1 000 MW ultra supercritical steam turbine[J]. Journal of Chinese Society of Power Engineering, 2013, 33(1): 11-16.
    [5] KHAYATZADEH S, TANNER D W J, TRUMAN C E, et al. Creep deformation and stress relaxation of a martensitic P92 steel at 650 °C[J].Engineering Fracture Mechanics, 2017, 175: 57-71.
    [6] ZHANG Shanglin, XUAN Fuzhen. Interaction of cyclic softening and stress relaxation of 9-12% Cr steel under strain-controlled fatigue-creep condition: experimental and modeling[J]. International Journal of Plasticity, 2017, 98: 45-64.
    [7] 郑小涛, 轩福贞, 喻九阳. 压力容器与管道安定/棘轮评估方法研究进展[J]. 压力容器, 2013, 30(1): 45-53, 59. ZHENG Xiaotao, XUAN Fuzhen, YU Jiuyang. Advances in shakedown/ratcheting estimation methods for pressure vessels and piping[J].Pressure Vessel Technology, 2013, 30(1): 45-53, 59.
    [8] JI Dongmei, REN Jianxing, ZHANG Laichang. A novel creep-fatigue life prediction model for P92 steel on the basis of cyclic strain energy density[J]. Journal of Materials Engineering and Performance, 2016, 25(11): 4868-4874.
    [9] SAINI N, PANDEY C, MAHAPATRA M M, et al. A comparative study of ductile-brittle transition behavior and fractography of P91 and P92 steel[J]. Engineering Failure Analysis, 2017, 81: 245-253.
    [10] 李茹, 杨钢, 杨沐鑫, 等. 进口X12CrMoWVNbN10-1-1转子的显微组织和力学性能分析[J]. 特钢技术, 2013, 19(1): 6-10, 15. LI Ru, YANG Gang, YANG Muxin, et al. Microstructure and mechanical properties analysis of imported X12CrMoWVNbN10-1-1 steel for turbinerotor[J]. Special Steel Technology,2013, 19(1): 6-10, 15.
    [11] XU Lianyong, ZHAO Lei, HAN Yongdian, et al. Characterizing crack growth behavior and damage evolution in P92 steel under creep-fatigue conditions[J]. International Journal of Mechanical Sciences, 2017, 134: 63-74.
    [12] MENG Qinghua, WANG Zhenqing. Creep damage models and their applications for crack growth analysis in pipes: a review[J]. Engineering Fracture Mechanics, 2016, 205:547-576.
    [13] RISITANO A, RISITANO G. Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters[J]. International Journal of Fatigue, 2013, 48: 214-222.
    [14] ZHU Shunpeng, HUANG Hongzhong, LIU Yu, et al. An efficient life prediction methodology for low cycle fatigue-creep based on ductility exhaustion theory[J]. International Journal of Damage Mechanics, 2012, 22(4): 556-571.
    [15] COFFIN L F, Jr. Fatigue at high temperature-prediction and interpretation[J]. Proceedings of the Institution of Mechanical Engineers, 1974, 188(1): 109-127.
    [16] COFFIN L F. Concept of frequency separation in life prediction for time-dependent fatigue[C]//Annual meeting of the American Society of Mechanical Engineers. New York, USA: [s.n.],1976.
    [17] MANSON S S, HALFORD G R, HIRSCHBERE M H. Creep-fatigue analysis by strainrange partitioning[R].Cleveland, United States: NASA Lewis Research Center, 1973.
    [18] CHABOCHE J L. Continuum damage mechanics: part II—damage growth, crack initiation, and crack growth[J]. Journal of Applied Mechanics, 1988, 55(1): 65-72.
    [19] 朱顺鹏, 黄洪钟, 何俐萍, 等. 高温低周疲劳-蠕变的改进型广义应变能损伤函数方法[J].航空学报,2011, 32(8): 1445-1452. ZHU Shunpeng, HUANG Hongzhong, HE Liping, et al. Improved generalized strain energy damage function method for high temperature low cycle fatigue-creep[J]. Acta Aeronauticaet Astronautica Sinica, 2011, 32(8): 1445-1452.
    [20] ZHU S P, HUANG H Z. A generalized frequency separation-strain energy damage function model for low cycle fatigue-creep life prediction[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(4): 227-237.
    [21] ZHU Shunpeng, HUANG Hongzhong, HE Liping. A novel viscosity-based model for low cycle fatigue-creep life prediction of high-temperature structures[J].Int J Damage Mech, 2012, 21: 1076-1099.
    [22] ZHU Shunpeng, HUANG Hongzhong, HE Liping, et al. A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys[J]. Engineering Fracture Mechanics, 2012, 90: 89-100.
    [23] 张亚杰. 9-12%Cr马氏体钢蠕变-疲劳交互作用下损伤特性研究[D].上海: 上海电力学院, 2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700