Hierarchically spacing DNA probes on bio-based nanocrystal for spatial detection requirements
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hierarchically spacing DNA probes on bio-based nanocrystal for spatial detection requirements
  • 作者:Lin ; Gan ; Ya ; Wang ; Meng ; Zhang ; Xuehuan ; Xia ; Jin ; Huang
  • 英文作者:Lin Gan;Ya Wang;Meng Zhang;Xuehuan Xia;Jin Huang;Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University;Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University;
  • 英文关键词:Cellulose nanocrystal;;DNA fluorescence probe;;Steric spacing;;Surface modification;;Mercury ion detection
  • 中文刊名:JXTW
  • 英文刊名:科学通报(英文版)
  • 机构:Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University;Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University;
  • 出版日期:2019-07-15
  • 出版单位:Science Bulletin
  • 年:2019
  • 期:v.64
  • 基金:financially supported by the National Natural Science Foundation of China (51603171 and 51373131);; Talent Project of Southwest University (SWU115034);; Fundamental Research Funds for the Central Universities (XDJK2016C032);; Key Laboratory of Polymeric Composite & Functional Materials of Ministry of Education (PCFM201605);; Hubei Key Laboratory of Advanced Textile Materials & Application (Fzxcl2017003)
  • 语种:英文;
  • 页:JXTW201913012
  • 页数:7
  • CN:13
  • ISSN:10-1298/N
  • 分类号:66-72
摘要
Sterically spacing and locating functional matters at the nanoscale exert critical effects on their application,especially for the fluorescence probes whose aggregation causes emission quenching.Here we achieved a hierarchical spacing strategy of DNA fluorescence probes for ion detection via locating them separately on rod-like cellulose nanocrystals(CNCs)and further isolating CNCs by pre-grafting long molecular chains.Controlling chemical structure of CNC and location degree could adjust the interspace of DNA probes(with a molecular length of ca.3.6 nm)in a range of 3.5-6.5 nm with a gradient about 0.2 nm.A length up to micrometer scale of the CNC nanorods was necessary to provide DNA probes with well-separated grafting locations and enough freedom,which brought a vast linear detection range from 10 nmol/L to 5 μmol/L of Hg2+ concentration.The abundant reactive sites on CNC allowed a grafting pre-location of poly(tert-butyl acrylate)(PtBA)to promote the isolation of DNA probes.Controlled radical polymerization was employed to adj ust the length of PtBA molecular chains,which increased the linear sensitivity coefficient of Hg2+ detection by ca.2.5 times.This hierarchical nanoscale spacing concept based on chemical design can hopefully cond uce to the development of biosensor and medical diagnosis.A hierarchical spacing strategy was applied to separate DNA fluorescent probes on CNCs and detect ion concentration linearly.The first-level spacing was to locate probes uniformly on CNCs,obtaining a wide linear range; and the second-level spacing was to isolate CNCs with polymer,obtaining an increased linear coefficient.
        Sterically spacing and locating functional matters at the nanoscale exert critical effects on their application,especially for the fluorescence probes whose aggregation causes emission quenching.Here we achieved a hierarchical spacing strategy of DNA fluorescence probes for ion detection via locating them separately on rod-like cellulose nanocrystals(CNCs)and further isolating CNCs by pre-grafting long molecular chains.Controlling chemical structure of CNC and location degree could adjust the interspace of DNA probes(with a molecular length of ca.3.6 nm)in a range of 3.5-6.5 nm with a gradient about 0.2 nm.A length up to micrometer scale of the CNC nanorods was necessary to provide DNA probes with well-separated grafting locations and enough freedom,which brought a vast linear detection range from 10 nmol/L to 5 μmol/L of Hg2+ concentration.The abundant reactive sites on CNC allowed a grafting pre-location of poly(tert-butyl acrylate)(PtBA)to promote the isolation of DNA probes.Controlled radical polymerization was employed to adj ust the length of PtBA molecular chains,which increased the linear sensitivity coefficient of Hg2+ detection by ca.2.5 times.This hierarchical nanoscale spacing concept based on chemical design can hopefully cond uce to the development of biosensor and medical diagnosis.A hierarchical spacing strategy was applied to separate DNA fluorescent probes on CNCs and detect ion concentration linearly.The first-level spacing was to locate probes uniformly on CNCs,obtaining a wide linear range; and the second-level spacing was to isolate CNCs with polymer,obtaining an increased linear coefficient.
引文
[1]Srinivasan K,Subramanian K,Murugan K,et al.Fluorescence quenching of MoS2nanosheets/DNA/silicon dot nanoassembly:effective and rapid detection of Hg2+ions in aqueous solution.Environ Sci Pollut Res 2018;25:10567-76.
    [2]Shi Y,Chen N,Su Y,et al.Silicon nanohybrid-based SERS chips armed with an internal standard for broad-range,sensitive and reproducible simultaneous quantification of lead(II)and mercury(II)in real systems.Nanoscale2018;10:4010-8.
    [3]Qu X,Yang F,Chen H,et al.Bubble-mediated ultrasensitive multiplex detection of metal ions in three-dimensional DNA nanostructure-encoded microchannels.ACS Appl Mater Inter 2017;9:16026-34.
    [4]Gan L,Liao J,Lin N,et al.Focus on gradientwise control of the surface acetylation of cellulose nanocrystals to optimize mechanical reinforcement for hydrophobic polyester-based nanocomposites.ACS Omega 2017;2:4725-36.
    [5]Li D,Wieckowska A,Willner I.Optical analysis of Hg2+ions by oligonucleotidegold-nanoparticle hybrids and DNA-based machines.Angew Chem Int Ed2008;47:3927-31.
    [6]Tanaka Y,Kondo J,Sychrovsky'V,et al.Structures,physicochemical properties,and applications of T-Hg II-T,C-Ag I-C,and other metallo-base-pairs.Chem Commun 2015;51:17343-60.
    [7]Zhu S,Zhuo Y,Miao H,et al.Detection of mercury(II)by DNA templated gold nanoclusters based on forming thymidine-Hg2+-thymidine duplexes.Luminescence 2015;30:631-6.
    [8]Liu Y,Dong X,Chen P.Biological and chemical sensors based on graphene materials.Chem Soc Rev 2012;41:2283-307.
    [9]Goodman RP,Heilemann M,Doose S,et al.Reconfigurable,braced,threedimensional DNA nanostructures.Nat Nanotechnol 2008;3:93-6.
    [10]Zhang F,Jiang S,Wu S,et al.Complex wireframe DNA origami nanostructures with multi-arm junction vertices.Nat Nanotechnol 2015;10:779-84.
    [11]Lu N,Pei H,Ge Z,et al.Charge transport within a three-dimensional DNAnanostructure framework.J Am Chem Soc 2012;134:13148-51.
    [12]Pei H,Lu N,Wen Y,et al.A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing.Adv Mater 2010;22:4754-8.
    [13]Song P,Li M,Shen J,et al.Dynamic modulation of DNA hybridization using allosteric DNA tetrahedral nanostructures.Anal Chem 2016;88:8043-9.
    [14]Jones MR,Seeman NC,Mirkin CA.Programmable materials and the nature of the DNA bond.Science 2015;347:1260901-11.
    [15]Han D,Pal S,Yang Y,et al.DNA gridiron nanostructures based on four-arm junctions.Science 2013;339:1412-5.
    [16]Pei H,Liang L,Yao G,et al.Reconfigurable three-dimensional DNAnanostructures for the construction of intracellular logic sensors.Angew Chem Int Ed 2012;51:9020-4.
    [17]Gómez-Ariza JL,Lorenzo F,García-Barrera T.Comparative study of atomic fluorescence spectroscopy and inductively coupled plasma mass spectrometry for mercury and arsenic multispeciation.Anal Bioanal Chem2005;382:485-92.
    [18]Chen S,Wang X,Niu Y,et al.Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS.Sci Bull 2017;62:277-89.
    [19]Meng W,Liu P,Cai P,et al.An ultrasensitive method for detecting picomolar levels of cadmium(II)by fast-scan anodic stripping voltammetry.Int JElectrochem Sci 2018;13:11808-18.
    [20]Chen X,Hong F,Zhang W,et al.Microchip electrophoresis based multiplexed assay for silver and mercury ions simultaneous detection in complex samples using a stirring bar modified with encoded hairpin probes for specific extraction.J Chromatogr A 2019;1589:173-81.
    [21]Liu X,Tang Y,Wang L,et al.Optical detection of mercury(II)in aqueous solutions by using conjugated polymers and label-free oligonucleotides.Adv Mater 2007;19:1471-4.
    [22]He S,Song B,Li D,et al.A graphene nanoprobe for rapid,sensitive,and multicolor fluorescent DNA analysis.Adv Funct Mater 2010;20:453-9.
    [23]Wen Y,Xing F,He S,et al.A graphene-based fluorescent nanoprobe for silver(I)ions detection by using graphene oxide and a silver-specific oligonucleotide.Chem Commun 2010;46:2596-8.
    [24]Srinivasan K,Subramanian K,Rajasekar A,et al.A sensitive optical sensor based on DNA-labelled Si@SiO2core-shell nanoparticle for the detection of Hg2+ions in environmental water samples.Bull Mat Sci 2017;40:1455-62.
    [25]Chu J,Park C,Jang K,et al.A technique for highly sensitive detection of mercury ions using DNA-functionalized gold nanoparticles and resonators based on a resonance frequency shift.J Mech Sci Technol 2018;32:799-804.
    [26]Zhang L,Li T,Li B,et al.Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(II)ion.Chem Commun2010;46:1476-8.
    [27]Song T,Zhu X,Zhou S,et al.DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution.Appl Surf Sci2015;347:505-13.
    [28]Du J,Jiang L,Shao Q,et al.Colorimetric detection of mercury ions based on plasmonic nanoparticles.Small 2013;9:1467-81.
    [29]Deng L,Zhou Z,Li J,et al.Fluorescent silver nanoclusters in hybridized DNAduplexes for the turn-on detection of Hg2+ions.Chem Commun2011;47:11065-7.
    [30]He D,He X,Wang K,et al.Intracellular acid-triggered drug delivery system using mesoporous silica nanoparticles capped with T-Hg2+-T base pairs mediated duplex DNA.J Mater Chem B 2013;1:1552-60.
    [31]Wu LL,Wang Z,Zhao SN,et al.A metal-organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury(II)ion detection.Chem Eur J2016;22:477-80.
    [32]Smith SB,Cui Y,Bustamante C.Overstretching B-DNA:the elastic response of individual double-stranded and single-stranded DNA molecules.Science1996;271:795-9.
    [33]Lin N,Dufresne A.Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites.Macromolecules 2013;46:5570-83.
    [34]Sacui IA,Nieuwendaal RC,Burnett DJ,et al.Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria,tunicate,and wood processed using acid,enzymatic,mechanical,and oxidative methods.ACS Appl Mater Interfaces 2014;6:6127-38.
    [35]Lin N,Bruzzese C,Dufresne A.TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges.ACS Appl Mater Inter2012;4:4948-59.
    [36]Montanari S,Roumani M,Heux L,et al.Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation.Macromolecules 2005;38:1665-71.
    [37]Jiang J,Ye W,Liu L,et al.Cellulose nanofibers prepared using the TEMPO/Laccase/O2system.Biomacromolecules 2016;18:288-94.
    [38]Araki J,Wada M,Kuga S.Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol)grafting.Langmuir 2001;17:21-7.
    [39]Majoinen J,Walther A,McKee JR,et al.Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization.Biomacromolecules 2011;12:2997-3006.
    [40]Habibi Y,Chanzy H,Vignon MR.TEMPO-mediated surface oxidation of cellulose whiskers.Cellulose 2006;13:679-87.
    [41]Kiy MM,Jacobi ZE,Liu J.Metal-induced specific and nonspecific oligonucleotide folding studied by FRET and related biophysical and bioanalytical implications.Chem Eur J 2012;18:1202-8.
    [42]Follain N,Marais MF,Montanari S,et al.Coupling onto surface carboxylated cellulose nanocrystals.Polymer 2010;51:5332-44.
    [43]Mangalam AP,Simonsen J,Benight AS.Cellulose/DNA hybrid nanomaterials.Biomacromolecules 2009;10:497-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700