提高复合挤压铸造Al/Al-Cu双金属宏观复合材料界面结合的新方法(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A novel method to improve interfacial bonding of compound squeeze cast Al/Al-Cu macrocomposite bimetals:Simulation and experimental studies
  • 作者:Mohammad ; Hossein ; BABAEE ; Ali ; MALEKI ; Behzad ; NIROUMAND
  • 英文作者:Mohammad Hossein BABAEE;Ali MALEKI;Behzad NIROUMAND;Department of Materials Engineering, Isfahan University of Technology;Department of Mechanical Engineering, Isfahan University of Technology;
  • 关键词:Al/Al-4.5wt.%Cu宏观复合双金属 ; 界面结合 ; 表面机加工图案 ; 显微组织 ; 力学性能 ; 模拟
  • 英文关键词:Al/Al-4.5wt.%Cu macrocomposite bimetal;;interfacial bonding;;surface machining pattern;;microstructure;;mechanical properties;;simulation
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:Department of Materials Engineering, Isfahan University of Technology;Department of Mechanical Engineering, Isfahan University of Technology;
  • 出版日期:2019-06-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:the financial support from Iran National Science Foundation (INSF) under grant number 95822903
  • 语种:英文;
  • 页:ZYSY201906007
  • 页数:16
  • CN:06
  • ISSN:43-1239/TG
  • 分类号:73-88
摘要
开发一种简便的提高复合挤压铸造Al/Al-4.5wt.%Cu双金属复合材料界面结合的新方法,并研究该方法对此双金属的显微组织和力学性能的影响。在挤压铸造Al-4.5wt.%Cu的内表面机加工一种特殊的同心槽图案,利用ProCAST和ANSYS软件对双金属构件界面区域的传热、凝固和产生的应力分布进行数值模拟,并进行实验验证。模拟结果表明,表面沟槽尖端完全熔化,沿界面产生较大的局部应力梯度场,这会导致插入界面的氧化铝层破裂,促进双金属组分的扩散结合。显微组织表征证实双金属界面存在明显的过渡区。通过加工表面图案,双金属的平均过渡区厚度和抗拉强度分别显著增加到375μm和54MPa。因此,该方法是一种经济可行的复合挤压铸造铝-铝宏观复合双金属的方法,不需要提前对固体镶块进行任何成本和时间密集型的化学或涂层处理。
        A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert.
引文
[1]AVNER S H.Introduction to physical metallurgy[M].2nd ed.USA:Mc Graw-Hill,1988.
    [2]ALIZADEH A,ESLAMI M,BABAEE M H.Investigation on microstructure,mechanical properties and fracture mechanism of trimodal SiC reinforced Al5083/Al2024 aluminum alloy based nanocomposites fabricated by mechanical milling and hot extrusion processes[J].Transactions of the Indian Institute of Metals,2018,71:2325-2338.
    [3]CHI Y,GU G,YU H,CHEN C.Laser surface alloying on aluminum and its alloys:A review[J].Optics and Lasers in Engineering,2018,100:23-37.
    [4]TAYAL R K,SINGH V,KUMAR S,GARG R.Compound castingA literature review[C]//Proc trends and advances in mechanical engineering.Faridabad,India:YMCA University of Science and Technology,2012:501-510.
    [5]BITSCHE R D.Design and computational analysis of compound castings and other multi-material structures[D].Denmark:Vienna University of Technology,2009.
    [6]ANIFANTIS N K,GEORGANTZINOS S K,GIANNOPOULOS G I,KAKAVAS P A.Elastomer macrocomposites[J].Advanced Structured Materials,2013,12:11-68.
    [7]YAN G Y,MAO F,CHEN F,WU W,CAO Z Q,WANG T M,LI T J.Characteristics evolution of 6009/7050 bimetal slab prepared by direct-chill casting process[J].Transactions of Nonferrous Metals Society of China,2016,26:895-904.
    [8]BYKOV A A.Bimetal production and applications[J].Steel in Translation,2011,41:778-786.
    [9]LIU T,WANG Q D,LIU P,SUN J W,YIN X L,WANG Q G.Microstructure and mechanical properties of overcast aluminum joints[J].Transactions of Nonferrous Metals Society of China,2015,25:1064-1072.
    [10]KLASSEN A,RUBNER M,ILG J,RUPITSCH S J,LERCH R,SINGER R F,KORNER C.Influence of the fabrication process on the functionality of piezoceramic patch transducers embedded in aluminum die castings[J].Smart Materials and Structures,2012,21:1-11.
    [11]LIU G,WANG Q,LIU T,YE B,JIANG H,DING W.Effect of T6heat treatment of microstructure and mechanical property of6101/A356 bimetal fabricated by squeeze casting[J].Materials Science and Engineering A,2017,696:208-215.
    [12]FENG J,YE B,ZUO L,WANG Q,WANG Q,JIANG H,DING W.Bonding of aluminum alloys in compound casting[J].Metallurgical and Materials Transactions A,2017,48:4632-4644.
    [13]PAPIS K J M,LOEFFLER J F,UGGOWITZER P J.Light metal compound casting[J].Science China Technological Sciences,2009,52:46-51.
    [14]PAPIS K J M,HALLSTEDT B,LOFFLER J F,UGGOWITZER P J.Interface formation in aluminum-aluminum compound casting[J].Acta Materialia,2008,56:3036-3043.
    [15]RUBNER M,GUNZL M,KORNER C,SINGER R F.Aluminum-aluminum compound fabrication by high pressure die casting[J].Materials Science and Engineering A,2011,528:7024-7029.
    [16]KOERNER C,SCHWANKL M,HIMMLER D.Aluminum-aluminum compound castings by electroless deposited zinc layers[J].Journal of Materials Processing Technology,2014,214:1094-1101.
    [17]LIU T,WANG Q,SUI Y,WANG Q,DING W.An investigation in to aluminum-aluminum bimetal fabrication by squeeze casting[J].Materials&Design,2015,68:8-17.
    [18]LIU T,WANG Q,SUI Y,WANG Q.Microstructure and mechanical properties of overcast 6101-6101 wrought Al alloy joint by squeeze casting[J].Journal of Materials Science and Technology,2016,32:298-304.
    [19]SCHWANKL M,WEDLER J,KORNER C.Wrought Al-cast Al compound casting based on zincate treatment for aluminum wrought alloy inserts[J].Journal of Materials Science and Technology,2016,238:160-168.
    [20]FENG B,XIN Y,SUN Z,YU H,WANG J,LIU Q.On the rule of mixtures for bimetal composites[J].Materials Science and Engineering A,2017,704:173-180.
    [21]BABAEE M H,NIROUMAND B,MALEKI A,LASHANI ZANDM.Simulation and experimental verification of interfacial interactions in a compound squeeze cast Al/Al-Cu macrocomposite bimetal[J].Transactions of Nonferrous Metals Society of China,2019,29:950-963.
    [22]HUFNAGEL W.Key to aluminuim alloys:designations,compositions,trade names of aluminuim materials[M].USA:Aluminum-Verlag,1982.
    [23]PANTELAKIS S G,CHAMOS A N,KERMANIDIS A T.A critical consideration for the use of Al-cladding for protecting aircraft aluminum alloy 2024 against corrosion[J].Theoretical and Applied Fracture Mechanics,2012,57:36-42.
    [24]SUN S,ZHENG Q,LI D,WEN J.Long-term atmospheric corrosion behavior of aluminum alloys 2024 and 7075 in urban,coastal and industrial environments[J].Corrosion Science,2009,51:719-727.
    [25]PETROYIANNIS P V,PANTELAKIS S G,HAIDEMENOPOULOSG N.Protective roll of local Al cladding against corrosion damage and hydrogen embrittlement of 2024 aluminum alloy specimens[J].Theoretical and Applied Fracture Mechanics,2005,44:70-81.
    [26]KUTZ M.Handbook of materials selection[M].1st ed.USA:Wiley,2002.
    [27]MATHERS G.The welding of aluminuim and its alloys[M].1st ed.Amsterdam:Elsevier,2002.
    [28]MALEKI A,SHAFYEI A,NIROUMAND B.Effects of squeeze casting parameters on the microstructure of LM13 alloy[J].Journal of Materials Processing Technology,2009,209:3790-3797.
    [29]MALEKI A,NIROUMAND B,SHAFYEI A.Effects of squeeze casting parameters on density,macrostructure and hardness of LM13alloy[J].Materials Science and Engineering A,2006,428:135-140.
    [30]KHODAVERDIZADEH H,NIROUMAND B.Effects of applied pressure on microstructure and mechanical properties of squeeze cast ductile iron[J].Materials&Design,2011,32:4747-4755.
    [31]BAGHI M,NIROUMAND B,EMADI R.Fabrication and characterization of squeeze cast A413-CSF composites[J].Journal of Alloys and Compounds,2017,710:29-36.
    [32]SEIYED BEIGI M T,NIROUMAND B.Liquid segregation behavior of a semi-solid squeeze cast A356 aluminum cup-shaped part[J].Journal of Materials Science and Technology,2017,33:2203-2211.
    [33]POURMAHMOUDI H R,NIROUMAND B.Effect of pressure on graphite morphology and mechanical properties of squeeze cast hyper-eutectic grey cast iron[J].Transactions of the Indian Institute of Metals,2018,71:1401-1410.
    [34]CHADWICK G A,YUE T M.Principles and applications of squeeze castings[J].Metals and Materials International,1989,5:6-12.
    [35]HO K,PEHLKE R D.Metal-mold interfacial heat transfer[J].Metallurgical and Materials Transactions B,1985,16:585-594.
    [36]FARDI ILKHCHY A,JABBARI M,DAVAMI P.Effect of pressure on heat transfer coefficient at the metal/mold interface of A356aluminum alloy[J].International Communications in Heat and Mass Transfer,2012,39:705-712.
    [37]NISHIDA Y,MATSUBARA H.Effect of pressure on heat transfer at the metal-mold casting interface[J].The British Foundryman,1976,69:274-278.
    [38]ESI Group.ProCAST User’s Manual[M].The Virtual Try Out Space Company,2016.
    [39]NATERER G F.Heat transfer in single and multiphase systems[M].1st ed.USA:CRC Press,2002.
    [40]ASTM Standard-E407.Standard practice for microetching metals and alloys[S].2007.
    [41]ZHANG M,ZHANG W,ZHAO H,ZHANG D,LI Y.Effect of pressure on microstructures and mechanical properties of Al-Cubased alloy prepared by squeeze casting[J].Transactions of Nonferrous Metals Society of China,2007,17:496-501.
    [42]CULLITON D,BETTS A J,KENNEDY D.Impact of intermetallic precipitates on the tribological and/or corrosion performance of cast aluminum alloys:A short review[J].International Journal of Cast Metals Research,2013,26:65-71.
    [43]TRUNOV M A,SCHOENITZ M,DREIZIN E L.Effect of polymorphic phase transformations in alumina layer on ignition of aluminum particles[J].Combustion Theory and Modeling,2006,10:603-623.
    [44]HILL R.The Mathematical theory of plasticity[M].2nd ed.UK:Oxford University Press,1998.
    [45]ASTM Standard-D2442.Standard specification for Alumina ceramics for electrical and electronic applications[S].2016.
    [46]Thermal and structural properties of fusion related materials[EB/OL].http://www-ferp.ucsd.edu/LIB/PROPS/PANOS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700