金属丝网上氧化铝催化剂载体层的水热合成制备工艺
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of alumina catalyst support layer on wire mesh by hydrothermal synthesis
  • 作者:丁强 ; 张莉 ; 徐宏
  • 英文作者:DING Qiang;ZHANG Li;XU Hong;School of Mechanical and Power Engineering,East China University of Science and Technology;
  • 关键词:水热合成 ; 氧化铝涂层 ; 形貌 ; 热稳定性 ; 机械结合力 ; 金属丝网
  • 英文关键词:hydrothermal synthesis;;alumina coating;;morphology;;thermal stability;;mechanical stability;;FeCrAl wire mesh
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:华东理工大学机械与动力工程学院;
  • 出版日期:2019-02-28
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.425
  • 基金:国家自然科学基金资助项目(51776074)
  • 语种:中文;
  • 页:GNCL201902031
  • 页数:7
  • CN:02
  • ISSN:50-1099/TH
  • 分类号:200-206
摘要
采用水热合成方法,成功地在FeCrAl金属丝网上制备出形貌可控且热稳定性良好的簇状氧化铝涂层。系统地研究了溶剂组分、沉淀剂浓度和溶液体系的pH值等制备工艺参数对涂层形貌的影响,获得了优化的制备工艺,并对涂层进行了热稳定性和结合力测试。结果表明,去离子水在溶剂中的体积比对涂层形貌的影响最大。当去离子水在溶剂中的体积比为0.2时,可以得到良好的簇状氧化铝结构,去离子水的体积比低于或高于0.2均会导致涂层发生严重的团聚。当溶液中沉淀剂浓度为2mol/L时,生成的簇状氧化铝结构完整且在基体表面连续均匀分布。当第二阶段水热过程的溶液为强酸性或碱性时氧化铝短小且不能在基体表面均匀连续生长。采用优化工艺制备得到的簇状氧化铝涂层的热稳定性优良,在1 000℃以上才发生明显的烧结,此时涂层的比表面积仍能保持在75m2/g。800℃以下时,热震和超声振荡共同导致的涂层质量损失率<10%。
        A cluster alumina coating with controllable morphology and good thermal stability was prepared on FeCrAl wire mesh by hydrothermal synthesis.The solvent composition,precipitant concentration and pH of the solution were investigated as main influence factors of the coating morphology to optimize the preparation process.The thermal stability and adhesion of the coating were tested by the thermal shock and ultrasonic vibration subsequently.The results show that solvent composition had crucial impact on the coating morphology.A good cluster alumina could be obtained with V(H2 O)∶V(solvent)=0.2,otherwise serious agglomeration occurred.The alumina coating with a cluster-like structure and a continuous and uniform distribution was formed on the substrate with C(urea)=2 mol/L.Due to the non-weakly acidic condition in the second stage hydrothermal process,short and non-uniform growth of alumina appeared.Meanwhile,the alumina coating had a good performance in thermal stability.The specific surface area could be maintained at 75 m2/g at 1 000℃,although the coating was about to sinter.The mass loss of the coating after special treatment was less than 10% due to thermal shock and ultrasonic vibration below 800℃.
引文
[1] Palma V,Ricca A,Meloni E,et al.Experimental and numerical investigations on structured catalysts for methane steam reforming intensification[J].Journal of Cleaner Production,2016,111(Part A):217-230.
    [2] Palma V,Ricca A,Meloni E,et al.Methane steam reforming intensification:experimental and numerical investigations on monolithic catalysts[J].Chemical Engineering Transaction,2015,43:919-924.
    [3] Bauer T,Haase S.Comparison of structured trickle-bed and monolithic reactors in Pd-catalyzed hydrogenation of alpha-methylstyrene[J].Chemical Engineering Journal,2011,169(1-3):263-269.
    [4] Noyen J V,Mullens S.Manufacturing of porous functional structures:design of catalysts[J].Chimica Oggi Chemistry Today,2013,31(3):16-19.
    [5] Montebelli A,Visconti C G,Groppi G,et al.Methods for the catalytic activation of metallic structured substrates[J].Catalysis Science&Technology,2014,4(9):2846-2870.
    [6] Hernández Garrido J C,Gaona D,Gómez D M,et al.Comparative study of the catalytic performance and final surface structure of Co3O4/La-CeO2washcoated ceramic and metallic honeycomb monoliths[J].Catalysis Today,2015,253(7):190-198.
    [7] Avila P,Montes M,Miro E E.Monolithic reactors for environmental applications a review on preparation technologies[J].Chemical Engineering Journal,2005,109(1):11-36.
    [8] Gao Y Y,Li X X,Zhang T,et al.Preparation and performance of Cu based catalyst on stainless steel wire mesh[J].Chinese Journal of Inorganic Chemistry,2012,28(2):27-232.
    [9] Hooman K,Malayeri M R.Metal foams as gas coolers for exhaust gas recirculation systems subjected to particulate fouling[J].Energy Conversion and Management,2016,117:475-481.
    [10] Katheria S,Deo G,Kunzru D.Washcoating of Ni/MgAl2O4catalyst on FeCr alloy monoliths for steam reforming of methane[J].Energy&Fuels,2017,31(3):3143-3153.
    [11] Egana A,Sanz O,Merino David,et al.Fischer-Tropsch synthesis intensification in foam structures[J].Industrial&Engineering Chemistry Research,2018,57(31):10187-10197.
    [12] Wu D F,Zhang Y H,Li Y D.Mechanical stability of monolithic catalysts:improving washcoat adhesion by FeCrAl alloy substrate treatment[J].Journal of Industrial and Engineering Chemistry,2017,56:175-184.
    [13] Wu X,Weng D,Zhao S,et al.Influence of an aluminized intermediate layer on the adhesion of aγ-Al2O3washcoat on FeCrAl[J].Surface&Coatings Technology,2005,190(2):434-439.
    [14] Govender S,Friedrich H B.Monoliths:a review of the basics,preparation methods and their relevance to oxidation[J].Catalysts,2017,7(2):62.
    [15] Porsin A V,Kulikov A V,Rogozhnikov V N,et al.Structured reactors on a metal mesh catalyst for various applications[J].Catalysis Today,2016,273:213-220.
    [16] Sinha A K,Sibi M G,Naidu N,et al.Process intensification for hydroprocessing of vegetable oils:experimental study[J].Industrial&Engineering Chemistry Research,2014,53(49):19062-19070.
    [17] Gong H,Chen Z,Wang M,et al.A study on the feasibility of the catalytic methane oxidation for landfill gas deoxygen treatment[J].Fuel,2014,120:179-185.
    [18] Akhlaghian F,Towfighi J,Mohajeri A,et al.Comparison of sol-gel method for washcoating metallic substrates[J].Scientia Iranica,Transaction C:Chemistry,Chemical Engineering,2010,17(2):191-197.
    [19] Jia J S,Zhou J,Zhang J H,et al.The influence of preparative parameters on the adhesion of alumina washcoats deposited on the metallic supports[J].Applied Surface Science,2007,253(23)9099-9104.
    [20] Luong N T,Yamasue E,Hideyuki O,et al.Adhesion properties of milled CuO-CeO2/gamma-Al2O3on metallic substrate for automotive catalytic converter[J].Particulate Science and Technology,2014,32(5):529-536.
    [21] Huang S,Zhu G N,Zhang C,et al.Immobilization of Co-Al layered double hydroxides on graphene oxide nanosheets:growth mechanism and supercapacitor studies[J].ACS Applied Material&Interfaces,2012,4(4):2242-2249.
    [22] Li H R,Zhang D S,Phornphimon M,et al.In situ synthesis of 3Dflower-like NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH3[J].Chemical Communications,2012,48(86):10645-10647.
    [23] Fang C,Shi L Y,Hu H,et al.Rational design of 3Dhierarchical foam-like Fe2O3@CuOx monolith catalysts for selective catalytic reduction of NO with NH3[J].Rsc Advances,2015,5(15):11013-11122.
    [24] Chai R J,Li Y K,Zhang Q F,et al.Foam structured NiO-MgO-Al2O3nanocomposites derived from NiMgAl layered double hydroxides in situ grown onto nickel foam:apromising catalyst for high throughput catalytic oxymethane reforming[J].Chem Cat Chem,2017,9(2):268-272.
    [25] Wei Q,Chen Z X,Nie Z R,et al.Mesoporous activated alumina layers deposited on FeCrAl metallic substrates by an in situ hydrothermal method[J].Journal of Alloys and Compounds,2005,396(1):283-287.
    [26] Chen D,Zhang L H,Li H Z,et al.A simple method for growing hexaaluminate on the surface of FeCrAl alloy[J].Applied Surface Science,2014,301(19):280-288.
    [27] Singh K B,Bhosale L R,Tirumkudulu M S.Cracking in drying colloidal films of flocculated dispersions[J].Langmuir,2009,25(8):4284-4287.
    [28] Chai R J,Fan S,Zhang Z Q,et al.Free standing NiOMgO-Al2O3nanosheets derived from layered double hydroxides grown onto FeCrAl fiber as structured catalysts for dry reforming of methane[J].ACS Sustainable Chemistry&Engineering,2017,5(6):4517-4522.
    [29] Cai S X,Zhang D,Shi L Y,et al.Porous Ni-Mn oxide nanosheets in situ formed on nickel foam as 3Dhierarchical monolith de-NOx catalysts[J].Nanoscale,2014,6(13):7346-7353.
    [30] Chen H Y,Zhang F Z,Fu S S,et al.In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic[J].Advances Materials,2006,18(23):3089-3093.
    [31] Chen D,Zhang L,Liu Y.Vertical and in situ growth of hexaaluminate embedded in alumina intermediate layer with high stability[J].Rsc Advances,2013,3(8):2534-2537.
    [32] Andrey V P,Vladimir N R,Alexander V K,et al.Crystallization of aluminum hydroxide in a sodium aluminate solution on a heterogeneous surface[J].Crystal Growth Design,2017,17(9):4730-4738.
    [33] Wei Q,Liu L,Nie Z R,et al.Preparation and characterization of mesoporous Al-MCM-41layers deposited on FeCrAl metallic foils by an in-situ hydrothermal method[J].Journal of Wuhan University of Technology Materials Science Edition,2009,24(1):1-4.
    [34] Tang Rui,Zhang Zhao,Yang Xiaojiao,et al.Synthesis of hierarchical leaf cluster nanoalumina by solvothermal approach[J].Chinese Journal of Inorganic Chemistry,2011,27(2):251-258(in Chinese).汤睿,张昭,杨晓娇,等.溶剂热合成分级叶片簇状纳米氧化铝[J].无机化学学报,2011,27(2):251-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700