MOF晶体薄膜材料的制备及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication methods and applications of metal-organic framework thin films
  • 作者:王丹 ; 王正帮 ; 王敬锋 ; 鲁雄刚 ; 周忠福
  • 英文作者:WANG Dan;WANG Zheng-bang;WANG Jing-feng;LU Xiong-gang;ZHOU Zhong-fu;School of Materials Science and Engineering,Shanghai University;Institute of Functional Interfaces,Karlsruhe Institute of Technology;School of Materials Science and Engineering,Hubei University;National Engineering Research Center for Nanotechnology;Department of Physics,Aberystwyth University;
  • 关键词:金属-有机框架薄膜 ; 液相外延法 ; 催化 ; 传感器 ; 储能
  • 英文关键词:metal-organic framework films;;liquid-phase epitaxy;;catalysis;;sensing;;energy storage
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:上海大学材料科学与工程学院;卡尔斯鲁厄理工学院功能界面所;湖北大学材料科学与工程学院;纳米技术及应用国家工程研究中心;亚伯大学物理系;
  • 出版日期:2019-03-08 14:49
  • 出版单位:工程科学学报
  • 年:2019
  • 期:v.41;No.299
  • 基金:自然科学基金资助项目(51371112);; 国家重点基础研究发展计划资助项目(2014CB643403)
  • 语种:中文;
  • 页:BJKD201903002
  • 页数:15
  • CN:03
  • ISSN:10-1297/TF
  • 分类号:17-31
摘要
作为纳米技术领域的一种新材料,金属-有机骨架(metal-organic framework,MOF)薄膜材料(也称为SURMOFs)获得了越来越多研究者的关注.多种合成方法的不断提出,为大量合成膜厚度、均匀性、形态、甚至维度均可控的MOF薄膜材料提供了可能性,并为薄膜材料在更多领域中的应用提供了机会.本文首先介绍了MOF薄膜材料基于液相或真空的各种合成方法及其适用范围,其中,获得高质量薄膜的最有效方法之一是在基底材料上沉积自组装单层(SAMs),进而诱导MOF薄膜的成核及生长.其次,总结了近年来MOF薄膜材料在分离、催化、传感等领域的研究进展,以及为满足环境可持续发展和对清洁能源的需求,新发展起来的在光催化、储能、光伏以及制备各种电子器件领域的应用.在此基础上,讨论了限制MOF薄膜实际应用的因素(例如薄膜生长机制需要更深入的研究、薄膜质量及薄膜热电性能等有待进一步提高等),对相关领域未来的研究方向进行了展望,以期为MOF薄膜材料进一步的研究发展提供理论参考.
        As one of the most promising nanomaterials,metal-organic framework( MOF) thin films( also known as surfacesupported MOF thin films,SURMOFs) have attracted much attention in recent years. The development of various synthetic methods makes it possible to obtain MOF thin films with controlled thickness,uniformity,morphology,and even dimensions,providing tremendous opportunities for more applications. Different synthesis methods of MOF thin films based on liquid phase or vacuum range were first introduced,and one of the most effective ways to fabricate quality thin films was depositing self-assembled monolayers( SAMs) on the primary substrate to further induce the nucleation and growth of MOF thin films. Furthermore,some traditional applications of MOF thin films( e. g. separation,catalysis,sensing) were summarized,as well as some newly-developed applications in photocatalysis,energy storage,photovoltaics,and electronic devices,which meet the demands for environmental sustainability and cleaner energy.Although the future is promising,MOF thin films still face some challenges. Therefore,some key factors those limit the MOF films' practical application were discussed,for example,the unclear growth mechanism of thin films,the poor quality and low film thermoelectric performance. Based on the review of recent developments,this article will provide references for the future research of MOF thin films.
引文
[1] Li B,Wen H M,Cui Y J,et al. Emerging multifunctional metalorganic framework materials. Adv Mater,2016,28(40):8819
    [2] Kaneti Y V,Dutta S,Hossain M S A,et al. Strategies for improving the functionality of zeolitic imidazolate frameworks:tailoring nanoarchitectures for functional applications. Adv Mater,2017,29(38):Art No. 1700213-1
    [3] Loiseau T,Volkringer C,Haouas M,et al. Crystal chemistry of aluminium carboxylates:from molecular species towards porous infinite three-dimensional networks. C R Chim,2015,18(12):1350
    [4] Fu J R. Fabrication and Gas Separation Properties of MOF Membrane and COF Membrane and the COF/MOF Composite Membrane.[Dissertation]. Changchun:Jilin University,2016(付静茹. MOF膜和COF膜以及COF/MOF复合膜的制备以及气体分离性质的研究[学位论文].长春:吉林大学,2016)
    [5] Li Y S,Yang W S. Molecular sieve membranes:from 3D zeolites to 2D MOFs. Chin J Catal,2015,36(5):692
    [6] Andres M A,Benzaqui M,Serre C,et al. Fabrication of ultrathin MIL-96(Al)films and study of CO2adsorption/desorption processes using quartz crystal microbalance. J Colloid Interface Sci,2018,519:88
    [7] Zhang J,Xia T F,Zhao D,et al. In situ secondary growth of Eu(Ⅲ)-organic framework film for fluorescence sensing of sulfur dioxide. Sens Actuators B,2018,260:63
    [8] Rubio-Gimenez V,Galbiati M,Castells-Gil J,et al. Bottom-up fabrication of semiconductive metal-organic framework ultrathin films. Adv Mater,2018,30(10):1704291
    [9] Shete M,Kumar P,Bachman J E,et al. On the direct synthesis of Cu(BDC)MOF nanosheets and their performance in mixed matrix membranes. J Membr Sci,2018,549:312
    [10] Bétard A,Fischer R A. Metal-organic framework thin films:from fundamentals to applications. Chem Rev,2012,112(2):1055
    [11] Sakaida S,Otsubo K,Sakata O,et al. Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nat Chem,2016,8(4):377
    [12] Edler K J,Yang B. Formation of mesostructured thin films at the air-liquid interface. Chem Soc Rev,2013,42(9):3765
    [13] Genesio G,Maynadie J,Carboni M,et al. Recent status on MOF thin films on transparent conductive oxides substrates(ITO or FTO). New J Chem,2018,42(4):2351
    [14] He Y R,Tang Y P,Ma D C,et al. Ui O-66 incorporated thinfilm nanocomposite membranes for efficient selenium and arsenic removal. J Membr Sci,2017,541:262
    [15] Chernikova V,Shekhah O,Eddaoudi M. Advanced fabrication method for the preparation of MOF thin films:liquid-phase epitaxy approach meets spin coating method. ACS Appl Mater Interfaces,2016,8(31):20459
    [16] Chen Y F,Li S Q,Pei X K,et al. A solvent-free hot-pressing method for preparing metal-organic-framework coatings. Angew Chem Int Ed,2016,55(10):3419
    [17] Li W J,Gao S Y,Liu T F,et al. In situ growth of metal-organic framework thin films with gas sensing and molecule storage properties. Langmuir,2013,29(27):8657
    [18] Shekhah O,Fu L L,Sougrat R,et al. Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces:mesoporous silica foam as a first case study. Chem Commun,2012,48(93):11434
    [19] Sun Y X,Yang F,Wei Q,et al. Oriented nano-microstructureassisted controllable fabrication of metal-organic framework membranes on nickel foam. Adv Mater,2016,28(12):2374
    [20] Yao M S,Tang W X,Wang G E,et al. MOF thin film-coated metal oxide nanowire array:significantly improved chemiresistor sensor performance. Adv Mater,2016,28(26):5229
    [21] Bao T,Zhang J,Zhang W P,et al. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography. J Chromatogr A,2015,1381:239
    [22] Dou Z S,Cai J F,Cui Y J,et al. Preparation and gas separation properties of metal organic framework membranes. Z Anorg Allg Chem,2015,641(5):792
    [23] Hromadka J,Tokay B,Correia R,et al. Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8.Sens Actuators B,2018,260:685
    [24] Toyao T,Styles M J,Yago T,et al. Fe3O4@HKUST-1 and Pd/Fe3O4@HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic. CrystEngComm,2017,19(29):4201
    [25] Lee D T,Zhao J J,Oldham C J,et al. Ui O-66-NH2 metal-organic framework(MOF)nucleation on Ti O2,Zn O,and Al2O3atomic layer deposition-treated polymer fibers:role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Appl Mater Interfaces,2017,9(51):44847
    [26] Qin X,Sun Y X,Wang N X,et al. Surface modifications for preparation of MOF thin films. Chem Ind Eng Prog,2017,36(4):1306(秦茜,孙玉绣,王乃鑫,等.表面修饰在MOF薄膜制备中的应用.化工进展,2017,36(4):1306)
    [27] Janghouri M,Hosseini H. Water-soluble metal-organic framework hybrid electron injection layer for organic light-emitting devices.J Inorg Organomet Polym Mater,2017,27(6):1800
    [28] Hou J W,Sutrisna P D,Zhang Y T,et al. Formation of ultrathin,continuous metal-organic framework membranes on flexible polymer substrates. Angew Chem Int Ed,2016,55(12):3947
    [29] Wang N Y,Liu Y,Qiao Z W,et al. Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2selectivity. J Mater Chem A,2015,3(8):4722
    [30] Liu J X,Shekhah O,Stammer X,et al. Deposition of metal-organic frameworks by liquid-phase epitaxy:the influence of substrate functional group density on film orientation. Materials,2012,5(9):1581
    [31] Virmani E,Rotter J M,Mahringer A,et al. On-surface synthesis of highly oriented thin metal-organic framework films through vapor-assisted conversion. J Am Chem Soc,2018,140(14):4812
    [32] Zhuang J L,Terfort A,Wll C. Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy:a review. Coord Chem Rev,2016,307:391
    [33] Guo Y,Mao Y Y,Hu P,et al. Self-confined synthesis of HKUST-1 membranes from CuO nanosheets at room temperature.Chemistry Select,2016,1(1):108
    [34] Liu Y,Pan J H,Wang N Y,et al. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. Angew Chem Int Ed, 2015, 127(10):3071
    [35] Brower L J,Gentry L K,Napier A L,et al. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth. Beilstein J Nanotechnol,2017,8:2307
    [36] Ismail F M,Abdellah A M,Ali P A,et al. Bilayer sandwichlike membranes of metal organic frameworks-electrospun polymeric nanofibers via Si O2nanoparticles seeding. Mater Today Commun,2017,12:119
    [37] Liu J X,Wll C. Surface-supported metal-organic framework thin films:fabrication methods,applications,and challenges. Chem Soc Rev,2017,46(19):5730
    [38] Horiuchi Y,Toyao T,Miyahara K,et al. Visible-light-driven photocatalytic water oxidation catalysed by iron-based metal-organic frameworks. Chem Commun,2016,52(29):5190
    [39] Fan L L,Xue M,Kang Z X,et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. J Mater Chem,2012,22(48):25272
    [40] Shekhah O,Wang H,Kowarik S,et al. Step-by-step route for the synthesis of metal-organic frameworks. J Am Chem Soc,2007,129(49):15118
    [41] Hurrle S,Friebe S,Wohlgemuth J,et al. Sprayable,large-area metal-organic framework films and membranes of varying thickness. Chem Eur J,2017,23(10):2294
    [42] Gliemann H,Wll C. Epitaxially grown metal-organic frameworks. Mater Today,2012,15(3):110
    [43] Ameloot R,Vermoortele F,Vanhove W,et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat Chem,2011,3(5):382
    [44] Makiura R,Konovalov O. Interfacial growth of large-area singlelayer metal-organic framework nanosheets. Sci Rep,2013,3:Art No. 2506-1
    [45] Gu P,Qian L N,Yan Z D,et al. Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonalclose-packed dielectric microspheres. Opt Commun,2018,419:103
    [46] Otsubo K,Kitagawa H. Metal-organic framework thin films with well-controlled growth directions confirmed by x-ray study. APL Mater,2014,2(12):124105
    [47] Makiura R,Motoyama S,Umemura Y,et al. Surface nano-architecture of a metal-organic framework. Nat Mater,2010,9(7):565
    [48] Wang Y X,Zhao M T,Ping J F,et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv Mater,2016,28(21):4149
    [49] Zhao Y B,Kornienko N,Liu Z,et al. Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nanocrystals. J Am Chem Soc,2015,137(6):2199
    [50] Müller U,Puetter H,Hesse M,et al. Method for Electrochemical Production of A Crystalline Porous Metal Organic Skeleton Material:US Patent,7968739B2. 2011-6-28
    [51] Li W J,Liu J,Sun Z H,et al. Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nat Commun,2016,7:11830
    [52] Feng J F,Yang X,Gao S Y,et al. Facile and rapid growth of nanostructured Ln-BTC metal-organic framework films by electrophoretic deposition for explosives sensing in gas and Cr3+detection in solution. Langmuir,2017,33(50):14238
    [53] Li M Y,Dinca M. Reductive electrosynthesis of crystalline metal-organic frameworks. J Am Chem Soc,2011,133(33):12926
    [54] Stassen I,Styles M,Grenci G,et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mater,2016,15(3):304
    [55] Ahvenniemi E,Karppinen M. In situ atomic/molecular layer-bylayer deposition of inorganic-organic coordination network thin films from gaseous precursors. Chem Mater,2016,28(17):6260
    [56] Lemaire P C,Zhao J J,Williams P S,et al. Copper benzenetricarboxylate metal-organic framework nucleation mechanisms on metal oxide powders and thin films formed by atomic layer deposition. ACS Appl Mater Interfaces,2016,8(14):9514
    [57] Delen G,Ristanovi c'Z,Mandemaker L D B,et al. Mechanistic insights into growth of surface-mounted metal-organic framework films resolved by infrared(nano-)spectroscopy. Chem Eur J,2018,24(1):187
    [58] Worrall S D,Bissett M A,Hill P I,et al. Metal-organic framework templated electrodeposition of functional gold nanostructures. Electrochim Acta,2016,222:361
    [59] Liu J X,Redel E,Walheim S,et al. Monolithic high performance surface anchored metal-organic framework Bragg reflector for optical sensing. Chem Mater,2015,27(6):1991
    [60] Otsubo K,Haraguchi T,Sakata O,et al. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction. J Am Chem Soc,2012,134(23):9605
    [61] Haraguchi T,Otsubo K,Sakata O,et al. Remarkable lattice shrinkage in highly oriented crystalline three-dimensional metalorganic framework thin films. Inorg Chem,2015,54(24):11593
    [62] Zhu Y H,Ciston J,Zheng B,et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat Mater,2017,16(5):532
    [63] Cliffe M J,Wan W,Zou X D,et al. Correlated defect nanoregions in a metal-organic framework. Nat Commun,2014,5:4176
    [64] Kozachuk O,Meilikhov M,Yusenko K,et al. A solid-solution approach to mixed-metal metal-organic frameworks-detailed characterization of local structures,defects and breathing behaviour of Al/V frameworks. Eur J Inorg Chem,2013,2013(26):4546
    [65] St Petkov P,Vayssilov G N,Liu J X,et al. Defects in MOFs:a thorough characterization. Chem Phys Chem,2012,13(8):2025
    [66] Bennett T D,Todorova T K,Baxter E F,et al. Connecting defects and amorphization in Ui O-66 and MIL-140 metal-organic frameworks:a combined experimental and computational study.Phys Chem Chem Phys,2016,18(3):2192
    [67] Feyand M,Mugnaioli E,Vermoortele F,et al. Automated diffraction tomography for the structure elucidation of twinned,submicrometer crystals of a highly porous,catalytically active bismuth metal-organic framework. Angew Chem Int Ed,2012,124(41):10519
    [68] Vermoortele F,Bueken B,Le Bars G,et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks:the unique case of Ui O-66(Zr). J Am Chem Soc,2013,135(31):11465
    [69] Adatoz E,Avci A K,Keskin S. Opportunities and challenges of MOF-based membranes in gas separations. Sep Purif Technol,2015,152:207
    [70] Huang K,Liu S N,Li Q Q,et al. Preparation of novel metalcarboxylate system MOF membrane for gas separation. Sep Purif Technol,2013,119:94
    [71] Hu Y X,Dong X L,Nan J P,et al. Metal-organic framework membranes fabricated via reactive seeding. Chem Commun,2011,47(2):737
    [72] Münch A S,Seidel J,Obst A,et al. High-separation performance of chromatographic capillaries coated with MOF-5 by the controlled SBU approach. Chem Eur J,2011,17(39):10958
    [73] Ramos-Fernandez E V,Garcia-Domingos M,Juan-Alcaniz J,et al. MOFs meet monoliths:Hierarchical structuring metal organic framework catalysts. Appl Catal A,2011,391(1-2):261
    [74] Zhang T Y,Liu W X,Meng G,et al. Construction of hierarchical copper-based metal-organic framework nanoarrays as functional structured catalysts. Chem Cat Chem,2017,9(10):1771
    [75] Maina J W,Schutz J A,Grundy L,et al. Inorganic nanoparticles/metal organic framework hybrid membrane reactors for efficient photocatalytic conversion of CO2. ACS Appl Mater Interfaces,2017,9(40):35010
    [76] Lin S Y,Pineda-Galvan Y,Maza W A,et al. Electrochemical water oxidation by a catalyst-modified metal-organic framework thin film. Chem Sus Chem,2017,10(3):514
    [77] Gong Y N,Ouyang T,He C T,et al. Photoinduced water oxidation by an organic ligand incorporated into the framework of a stable metal-organic framework. Chem Sci,2016,7(2):1070
    [78] Usov P M,Ahrenholtz S R,Maza W A,et al. Cooperative electrochemical water oxidation by Zr nodes and Ni-porphyrin linkers of a PCN-224 MOF thin film. J Mater Chem A,2016,4(43):16818
    [79] Johnson B A,Bhunia A,Ott S. Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal-organic framework thin film. Dalton Trans,2017,46(5):1382
    [80] Vaddipalli S R,Sanivarapu S R,Vengatesan S,et al. Heterostructured Au NPs/CdS/La BTC MOFs photoanode for efficient photoelectrochemical water splitting:Stability enhancement via CdSe QDs to 2D-CdS nanosheets transformation. ACS Appl Mater Interfaces,2016,8(35):23049
    [81] Zhao S L,Wang Y,Dong J C,et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy,2016,1:16184
    [82] Fan L L. Preparation and Application of Zeolite and Metal-Organic Framework Membranes[Dissertation]. Changchun:Jilin University,2014(范黎黎.沸石分子筛膜和金属-有机骨架膜的制备和应用[学位论文].长春:吉林大学,2014)
    [83] Ye L,Liu J X,Gao Y,et al. Highly oriented MOF thin filmbased electrocatalytic device for the reduction of CO2to CO exhibiting high faradaic efficiency. J Mater Chem A,2016,4(40):15320
    [84] Kornienko N,Zhao Y B,Kley C S,et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc,2015,137(44):14129
    [85] Allendorf M D,Houk R J,Andruszkiewicz L,et al. Stress-induced chemical detection using flexible metal-organic frameworks. J Am Chem Soc,2008,130(44):14404
    [86] Hromadka J,Tokay B,Correia R,et al. Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1. Sens Actuators B,2018,255:2483
    [87] Shu Y,Yan Y,Chen J Y,et al. Ni and Ni O nanoparticles decorated metal-organic framework nanosheets:Facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl Mater Interfaces,2017,9(27):22342
    [88] Liu J,Sun F X,Zhang F,et al. In situ growth of continuous thin metal-organic framework film for capacitive humidity sensing. J Mater Chem,2011,21(11):3775
    [89] Aubrey M L,Long J R. A dual-ion battery cathode via oxidative insertion of anions in a metal-organic framework. J Am Chem Soc,2015,137(42):13594
    [90] Jiao Y,Pei J,Yan C S,et al. Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices. J Mater Chem A,2016,4(34):13344
    [91] Li B,Liu J,Nie Z M,et al. Metal-organic frameworks as highly active electrocatalysts for high-energy density,aqueous zinc-polyiodide redox flow batteries. Nano Lett,2016,16(7):4335
    [92] Lee D Y,Kim E K,Shin C Y,et al. Layer-by-layer deposition and photovoltaic property of Ru-based metal-organic frameworks.RSC Adv,2014,4(23):12037
    [93] Lopez H A,Dhakshinamoorthy A,Ferrer B,et al. Photochemical response of commercial MOFs:Al2(BDC)3and its use as active material in photovoltaic devices. J Phys Chem C,2011,115(45):22200
    [94] Chi W S,Roh D K,Lee C S,et al. A shape-and morphologycontrolled metal organic framework template for high-efficiency solid-state dye-sensitized solar cells. J Mater Chem A,2015,3(43):21599
    [95] Liu J X,Zhou W C,Liu J X,et al. A new class of epitaxial porphyrin metal-organic framework thin films with extremely high photocarrier generation efficiency:promising materials for all-solid-state solar cells. J Mater Chem A,2016,4(33):12739
    [96] Deng H X,Grunder S,Cordova K E,et al. Large-pore apertures in a series of metal-organic frameworks. Science,2012,336(6084):1018
    [97] Park H J,So M C,Gosztola D,et al. Layer-by-layer assembled films of perylene diimide-and squaraine-containing metal-organic framework-like materials:Solar energy capture and directional energy transfer. ACS Appl Mater Interfaces,2016,8(38):24983
    [98] Sheberla D,Bachman J C,Elias J S,et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.Nat Mater,2017,16(2):220
    [99] Zhang M,Ma L,Wang L L,et al. Insights into the use of metalorganic framework as high-performance anticorrosion coatings.ACS Appl Mater Interfaces,2018,10(3):2259
    [100] Talin A A,Centrone A,Ford A C,et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science,2013:1246738
    [101] Erickson K J,Leonard F,Stavila V,et al. Thin film thermoelectric metal-organic framework with high seebeck coefficient and low thermal conductivity. Adv Mater,2015,27(22):3453
    [102] Jain P,Stroppa A,Nabok D,et al. Switchable electric polarization and ferroelectric domains in a metal-organic-framework.Npj Quantum Mater,2016,1(1):16012
    [103] Wang Z B,Nminibapiel D,Shrestha P,et al. Resistive switching nanodevices based on metal-organic frameworks. Chem Nano Mat,2016,2(1):67
    [104] Gu Z G,Chen S C,Fu W Q,et al. Epitaxial growth of MOF thin film for modifying the dielectric layer in organic field-effect transistors. ACS Appl Mater Interfaces,2017,9(8):7259
    [105] Shekhah O,Wang H,Zacher D,et al. Growth mechanism of metal-organic frameworks:insights into the nucleation by employing a step-by-step route. Angew Chem Int Ed,2009,48(27):5038
    [106] Xu G,Yamada T,Otsubo K,et al. Facile“modular assembly”for fast construction of a highly oriented crystalline MOF nanofilm. J Am Chem Soc,2012,134(40):16524
    [107] Ohnsorg M L,Beaudoin C K,Anderson M E. Fundamentals of MOF thin film growth via liquid-phase epitaxy:investigating the initiation of deposition and the influence of temperature. Langmuir,2015,31(22):6114
    [108] Yu X J,Zhuang J L,Scherr J,et al. Minimization of surface energies and ripening outcompete template effects in the surface growth of metal-organic frameworks. Angew Chem Int Ed,2016,55(29):8348
    [109] Hod I,Sampson M D,Deria P,et al. Fe-porphyrin-based metal-organic framework films as high-surface concentration,heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal,2015,5(11):6302
    [110] Dragasser A,Shekhah O,Zybaylo O,et al. Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy. Chem Commun,2012,48(5):663
    [111] Yaghi O M,O'Keeffe M,Ockwig N W,et al. Reticular synthesis and the design of new materials. Nature, 2003, 423(6941):705

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700