MoO_3掺杂对二氧化硅吸附Cu(Ⅱ)影响的Monte Carlo模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Monte Carlo simulation of effect of MoO_3 doping on Cu(Ⅱ) adsorption of silica
  • 作者:王姣 ; 金哲珺雨 ; 丁开宁 ; 赵微微 ; 蒲小华 ; 李宗孝
  • 英文作者:WANG Jiao;JIN Zhejunyu;DING Kaining;ZHAO Weiwei;PU Xiaohua;LI Zongxiao;College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences;Department of Chemistry, Research Institute of Photocatalysis,State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University;Xi'an Traffic Engineering Institute;
  • 关键词:Monte ; Carlo模拟 ; 密度泛函理论 ; 吸附 ; Cu(Ⅱ) ; 微量热技术
  • 英文关键词:Monte Carlo simulation;;Density Function theory;;adsorption;;Cu(Ⅱ);;microcalorimetry
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:宝鸡文理学院化学化工学院;福州大学光化学研究所化学系能源与环境光催化国家重点实验室;西安交通工程学院;
  • 出版日期:2018-10-23 14:37
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金青年基金项目(51702006);; 陕西省植物化学重点实验室项目(17JS009);; 陕西省科技计划项目(2018JQ2056);; 陕西省高校科协青年人才托举计划项目(20170707);; 宝鸡文理学院博士科研启动项目(ZK2017026)
  • 语种:中文;
  • 页:HGSZ201901040
  • 页数:5
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:365-369
摘要
利用Monte Carlo方法,分别模拟二氧化硅和钼掺杂二氧化硅对Cu(Ⅱ)的吸附行为。结果表明,Cu(Ⅱ)被吸附于该纳米材料的表面和原子间隙之中;模拟发现加入少量氧化钼于二氧化硅中不会显著改变对Cu(Ⅱ)的吸附能力。同时采用广义梯度近似(GGA)的密度泛函理论(DFT)对其过程进行验证,并通过微量热技术佐证了二氧化硅及钼掺杂二氧化硅对水中Cu(Ⅱ)的吸附行为,实验发现,吸附过程的ΔH<0,ΔS<0,范德华力为吸附驱动力,分子模拟与实验结果相吻合。
        The adsorption behavior of Cu(Ⅱ) on silica and molybdenum doped silica was simulated by Monte Carlo method. The results show that Cu(Ⅱ) is adsorbed on the surface of the nanomaterial and the interatomic space. It is found that adding a small amount of molybdenum oxide to silica does not significantly change the adsorption capacity of Cu(Ⅱ). At the same time, the generalized gradient approximation(GGA) density functional theory(DFT)was used to verify the process, and the adsorption behavior of Cu(Ⅱ) in water by silica and molybdenum dopedsilica was verified by microcalorimetry. It was found that the adsorption process had ΔH<0, ΔS<0, van der Waals force as the adsorption driving force, and the molecular simulation was consistent with the experimental results.
引文
[1] Amrute A P, Bordoloi A, Lucas N, et al. Gel synthesis of MoO3/SiO2composite for catalytic application in condensation of anisole with paraformaldehyde[J]. Catalysis Letters. 2008, 126:286-292.
    [2]张谊华,徐奕德,石映祯,等. MoO3/g-Al2O3催化剂的分子层特性表征[J].催化学报, 1987, 8(1):27-32.Zhang Y H, Xu Y D, Shi Y Z, et al. Molecular layer characterization of MoO3/g-Al2O3catalyst[J]. Journal of Catalysis,1987, 8(1):27-32.
    [3] Shani E, Ashosh D, Eric B, et al. Chemical insight into the adsorption of chromium(III)on iron oxide/mesoporous silica nanocomposites[J]. Langmuir, 2015, 31(27):7553-7562.
    [4]孙书勇,曹达鹏,汪文川. MCM-22型分子筛中纯的和混合的轻烃的吸附行为的Monte Carlo模拟研究[J].北京化工大学学报, 2003, 30(5):1-5.Sun S Y, Cao D P, Wang W C. Monte carlo simulation study on adsorption behavior of pure and mixed light hydrocarbons in MCM-22 Zeolite[J]. Journal of Beijing University of Chemical Technology, 2003, 30(5):1-5.
    [5]贾玉香,郭向云.超临界流体的CO和H2吸附过程的Monte Carlo模拟[J].物理化学学报, 2005, 21(3):306-309.Jia Y X, Guo X Y. Monte carlo simulation of CO and H2adsorption processes in supercritical fluids[J]. Journal of Physical Chemistry, 2005, 21(3):306-309.
    [6]何科荣,李县法,李华.活性炭吸附过程的巨正则系综Monte Carlo模拟[J].新疆大学学报, 2007, 24(2):184–190.He K R, Li X F, Li H. Giant regular ensemble monte carlo simulation of activated carbon adsorption process[J]. Journal of Xinjiang University, 2007, 24(2):184-190.
    [7] Cao D P, Wang W C, Shen Z G, et al. Determination of pore size distribution and adsorption of methane and CCl4on activated carbon by molecular simulation[J]. Carbon, 2002, 40(13):2359-2365.
    [8]曹达鹏,汪文川.巨正则系综Monte Carlo模拟方法确定活性炭的微孔尺寸[J].高等学校化学学报, 2002, 23(5):910-914.Cao D P, Wang W C. Determination of the pore size of activated carbon by the grand canonical ensemble monte carlo simulation method[J]. Chemical Journal of Chinese Universities, 2002, 23(5):910-914.
    [9]曹达鹏,高广图,汪文川.巨正则系综Monte Carlo模拟方法模拟甲烷在活性炭孔中的吸附存储[J].化工学报, 2000, 51(1):23-30.Cao D P, Gao G T, Wang W C. Giant regular ensemble monte carlo simulation method for simulating adsorption storage of methane in activated carbon pores[J]. Journal of Chemical Industry and Engineering, 2000, 51(1):23-30.
    [10] Wang Q, Johnson J K. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores[J]. Journal of Physical Chemistry, 1999, 110:577-586.
    [11] Wang Q, Johnson J K. Optimization of carbon nanotube arrays for hydrogen adsorption[J]. Journal of Physical Chemistry B, 1999,103(23):4809-4813.
    [12] Wang Q, Johnson J K. Adsorption of hydrogen in graphite slit pores[J]. International Journal of Thermophysics, 1998, 19(102):835-844.
    [13] Wang Q, Johnson J K. Hydrogen adsorption on graphite and in carbon slit pores from path integral simulations[J]. Molecular Physics, 1998, 95(2):299-309.
    [14] Petrova N V, Yakovkin I N, Ptushinskii Y G. Monte-Carlo simulations of hydrogen on W(110)and Mo(110)surfaces[J].Eueopean Physical Journal B, 2004, 38(3):525-531.
    [15] Hohenbeg P, Kohn W. Inhomogeneous equations gas[J]. Physical Review, 1964, 136(3):864-871.
    [16] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A):1133-1138.
    [17] Paul J F, Sautrt P. Comparison of the nature the hydrogen-metal bond on Pd(111)and Ni(111)by a periodic density functional method[J]. Surface Science Letter, 1996, 365(1/2):L403-L409.
    [18] Dong W, Hafner J. H2dissociative adsorption on Pd(111)[J].Physical Review B, 1997, 56(23):15396-15403.
    [19] Ledentu V, Dong W, Sautet P. Ab initio study of the dissociative adsorption of H2on the Pd(110)surface[J]. Surface Science, 1998,412/413:518-526.
    [20] Francesco F, Rd G W. Energetics of hydrogen coverage on group VIII transition metal surfaces and a kinetic model for adsorption/desorption[J]. Journal of Chemical Physics, 2005, 122(1):014704-014721.
    [21] Montgomer R, Melaugh R, Lau C, et al. Determination of the energy equivalent of a water solution calorimeter with a standard substance[J]. The Journal of Chemical Thermodynamics, 1977, 9(10):915-936.
    [22] Zhou F B, Liu S Q, Pang Y Q, et al. Effects of coal functional groups on adsorption microheat of coal bed methane[J]. Energy Fuels, 2015, 29:1550-1557.
    [23] Tan Y. Experimental methods designed for measuring corrosion in highly resistive and inhomogeneous media[J]. Corrosion Science,2011, 53:1145-1155.
    [24] Blochl E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24):17953-17979.
    [25] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B Condensed Matter, 1999, 59(3):1758-1775.
    [26] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
    [27] Shen Y R, Jiang P P, Zhang J. Highly dispersed molybdenum incorporated hollow mesoporous silica spheres as an efficient catalyst on epoxidation of olefins[J]. Molecular Catalysis, 2017,433:212-223.
    [28] Can K, Ozmen M, Ersoz M. Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization[J]. Colloids&Surface B Bioterfaces, 2009,71(1):154-159.
    [29] Zhao W W, Cui B, Peng H, Et Al. Novel method to investigate the interaction force between etoposide and APTES-functionalized Fe3O4@n SiO2@m SiO2nanocarrier for drug loading and release processes[J]. Journal of Physical Chemistry C, 2015, 119(8):4379-4386.
    [30] Li Z X. Zhao W W, Pu X H. Study on the oscillation dissolved behavior of oxysophocarpine in water[J]. Thermochimca Acta,2012, 537(11):76-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700