若尔盖湿地潜在蒸散时空动态特征及影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal-Spatial Dynamic Characteristics and Impact Factors of Potential Evapotranspiration in Zoige Wetland
  • 作者:靳晓言 ; 陈艺冉 ; 郭嘉琛 ; 罗登泽 ; 强皓凡
  • 英文作者:JIN Xiaoyan;CHEN Yiran;GUO Jiachen;LUO Dengze;QIANG Haofan;State Key Laboratory of Hydraulics and Mountain River Engineering,College of Water Resources and Hydropower,Sichuan University;Provincial Key Laboratory of Water-Saving Agriculture in Hilly Areas of South China;School of Materials Science and Engineering,Shandong University;School of Economics,Fudan University;
  • 关键词:若尔盖湿地 ; 潜在蒸散 ; Penman-Monteith模型 ; 趋势分析 ; 时空变化
  • 英文关键词:Zoige Wetland;;potential evapotranspiration;;Penman-Monteith model;;trend analysis;;temporalspatial variation
  • 中文刊名:STBY
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:四川大学水力学与山区河流开发保护国家重点实验室水利水电学院;南方丘区节水农业研究四川省重点实验室;山东大学材料科学与工程学院;复旦大学经济学院;
  • 出版日期:2019-01-10
  • 出版单位:水土保持研究
  • 年:2019
  • 期:v.26;No.132
  • 基金:西北典型农区高效节水灌溉技术与集成(2016YFC0400200);; 教育部国家级大学生创新创业训练项目(201710610152)
  • 语种:中文;
  • 页:STBY201901038
  • 页数:6
  • CN:01
  • ISSN:61-1272/P
  • 分类号:240-245
摘要
潜在蒸散(ET0)对水资源评价和气候变化均具有重要意义。利用若尔盖湿地及其周边19个气象站1960—2015年逐日气象资料,根据辐射修正的Penman-Monteith模型计算了湿地潜在蒸散量,采用累积距平、Mann-Kendall检验、Pettitt检验、Theil-Sen趋势度、Hurst指数等方法分析了蒸散变化规律,并对蒸散影响因子进行了主成分分析。结果表明:(1)若尔盖湿地年ET0均值为625.3mm,并以4.89mm/10a的速率显著上升(p<0.01),四季ET0表现为夏季>春季>秋季>冬季。年、秋、冬ET0分别在1968年(p<0.01),1997年(p<0.01),2003年(p<0.1)突变上升,春、夏两季未出现突变。(2)湿地年均ET0呈南部、东部边缘高、西北—东南一线较低的空间分布特征,且变化速率由东北向西南递减,其中西部班玛以北及南部马尔康、黑水之间地区ET0呈缓慢下降趋势。(3)湿地年ET0的Hurst指数在0.56~0.91间,主要呈四周高、中部低的空间分布规律。未来湿地ET0变化趋势以持续性增加为主,面积比例为96.88%。(4)气温上升是引起湿地ET0增加的最主要原因,其次是日照时数的增加和相对湿度的降低。净辐射、风速和降水量的减少引起的ET0减少被气温等其他因素作用所抵消。
        Potential evapotranspiration(ET0)is of great significance for water resources assessment and climate change.Based on daily meteorological data of 19 weather stations in Zoige Wetland and its surrounding area from 1960 to 2015,ET0 was calculated by the radiation-calibrated Penman-Monteith model.The temporal-spatial change characteristics of ET0 were analyzed by cumulative departure,Mann-Kendall test,Pettitt test,Theil-Sen slope estimator and Hurst index,while the influencing factors of ET0 were investigated by principal component analysis.The results showed that:(1)the average of annual ET0 was 625.3 mm with a significant increasing trend of 4.89 mm/10 a(p<0.01);The ET0 of four seasons decreased in the sequence:summer>spring>autumn>winter;the annual,autumn and winter ET0 showed a significant abrupt point in 1968(p<0.01),1997(p<0.01)and 2003(p<0.1),respectively,while there was no mutation in spring and summer ET0;(2)the average annual ET0 was high in the southern and eastern edges and low along the northwest-southeast line with the changing rate decreasing from northeast to southwest,while ET0 of the northern area to Banma and the region between Maerkang and Heishui showed a slowly decreasing trend;(3)the Hurst index of ET0 ranged from 0.56 to 0.91,which mainly distributed high around the circum and low in the middle;the future change trend of ET0 for the entire region is mainly towards a persistentincrease and this area accounts for 96.88% of the total;(4)the dominant reason for ET0 increase was temperature increase,followed by sunshine duration increase and relative humidity decrease.The reduction of ET0 caused by decrease of net radiation,wind speed and precipitation is offset by other factors.
引文
[1]王建兵,王素萍,汪治桂.1971—2010年若尔盖湿地潜在蒸散量及地表湿润度的变化趋势[J].地理科学,2015,35(2):245-250.
    [2]张小磊,杨梅学.基于GAME-Tibet IOP的青藏高原蒸散研究[J].地理科学,2010,30(6):929-935.
    [3]尹云鹤,吴绍洪,戴尔阜.1971—2008年我国潜在蒸散时空演变的归因[J].科学通报,2010,55(22):2226-2234.
    [4]朱国锋,何元庆,蒲焘,等.1960—2009年横断山区潜在蒸发量时空变化[J].地理学报,2011,66(7):905-916.
    [5]梁丽乔,李丽娟,张丽,等.松嫩平原西部生长季参考作物蒸散发的敏感性分析[J].农业工程学报,2008,24(5):1-5.
    [6]刘蓉,文军,王欣.黄河源区蒸散发量时空变化趋势及突变分析[J].气候与环境研究,2016,21(5):503-511.
    [7]李志威,王兆印,张晨笛,等.若尔盖沼泽湿地的萎缩机制[J].水科学进展,2014,25(2):172-180.
    [8]张秋劲.若尔盖国家级生态功能保护区可持续发展研究[D].成都:四川大学,2004.
    [9]李斌,董锁成,江晓波,等.若尔盖湿地草原沙化驱动因素分析[J].水土保持研究,2008,15(3):112-120.
    [10]刘佳,陈超,秦宁生,等.青藏高原若尔盖生态区水资源对气候变化的响应[J].冰川冻土,2016,38(2):498-508.
    [11] Yin Y H,Wu S H,Zheng D,et al.Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China[J].Agric Water Manage,2008,95:77-84.
    [12]李志威,孙萌,游宇驰,等.若尔盖高原实际蒸散量变化规律研究[J].生态环境学报,2017,26(8):1317-1324.
    [13]杜加强,舒俭民,刘成程,等.黄河上游参考作物蒸散量变化特征及其对气候变化的响应[J].农业工程学报,2012,28(12):92-100.
    [14] Allen R G,Pereira L S,Raes D,et al.Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56[M].Rome:Fao-Food and Agriculture Organization of the United Nations,1998.
    [15] Pettitt A N.A non-parametric approach to the change point problem[J].Applied Statistics,1979,28(2):126-135.
    [16] Kendall M G.Rank correlation methods[M].London:Griffin,1970.
    [17]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,1999.
    [18]袁丽华,蒋卫国,申文明,等.2000—2010年黄河流域植被覆盖的时空变化[J].生态学报,2013,33(24):7798-7806.
    [19] Hurst H E,Black R P,Simika Y M.Long-term Storage:An experimental study[M].London:Constable,1965.
    [20]邓兴耀,姚俊强,刘志辉,等.2000—2014年天山山区蒸散发时空动态特征[J].水土保持研究,2017,24(4):266-273.
    [21]毛飞,唐世浩,孙涵,等.近46年青藏高原干湿气候区动态变化研究[J].大气科学,2008,32(3):499-507.
    [22]吕晓蓉,王学雷.湖北省潜在蒸散量的时空变化及其影响因子分析[J].华中师范大学学报:自然科学版,2016,50(5):764-769.
    [23]戴洋,罗勇,王长科,等.1961—2008年若尔盖高原湿地的气候变化和突变分析[J].冰川冻土,2010,32(1):35-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700