Buoyancy of convective-scale updrafts in the outer cores of sheared tropical cyclones
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Buoyancy of convective-scale updrafts in the outer cores of sheared tropical cyclones
  • 作者:LI ; Qingqing ; FANG ; Qiaoxian
  • 英文作者:LI Qingqing;FANG Qiaoxian;Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster of the Ministry of Education, Nanjing University of Information Science and Technology;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences;
  • 关键词:热带气旋 ; 垂直风切变 ; 外核区 ; 上升运动 ; 浮力
  • 英文关键词:Tropical cyclone;;vertical wind shear;;outer core;;updraft;;buoyancy
  • 中文刊名:AOSL
  • 英文刊名:大气和海洋科学快报(英文版)
  • 机构:Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster of the Ministry of Education, Nanjing University of Information Science and Technology;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences;
  • 出版日期:2019-01-16
  • 出版单位:Atmospheric and Oceanic Science Letters
  • 年:2019
  • 期:v.12
  • 基金:supported by the National Key Research and Development Program of China [grant numbers 2017YFC1501601 and 2015CB452803];; the National Natural Science Foundation of China [grant numbers41475058,41730961,and 41875054];; the Basic Research Fund of the Chinese Academy of Meteorological Sciences[grant number 2016Z003];; the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)
  • 语种:英文;
  • 页:AOSL201901008
  • 页数:8
  • CN:01
  • ISSN:11-5693/P
  • 分类号:60-67
摘要
通常认为局地浮力与对流活动息息相关。本文统计分析了不同强度垂直风切变影响下热带气旋外核区对流尺度上升运动的浮力特征。研究发现,弱至中等强度的垂直风切变环境下,顺切变象限的浮力大于逆切变象限的浮力,顺切变象限的总浮力随风切变的增大而减小。而在极端强度的风切变影响下,大部分总浮力为负值。热力浮力、动力浮力与上升运动垂直质量输送没有明显相关性,因此总浮力和垂直质量输送也无显著相关性。上述结果加深了我们对热带气旋外核区对流发生发展过程的物理认识。
        In this paper, the authors present the statistical characteristics of the buoyancy of outer-core convective-scale updrafts in numerically simulated sheared tropical cyclones(TCs). The total buoyancy is predominantly positive in weak-to-strong ambient vertical shears, whereas much of the total buoyancy under an extreme shear environment becomes negative. Thermal buoyancy positively contributes to the total buoyancy value. For weakly and moderately sheared TCs,the updraft buoyancy is statistically signi?cantly stronger downshear but smaller upshear. Such a downshear preference of strong buoyancy becomes less evident as the shear magnitude increases. The total buoyancy of updrafts shows a decreasing tendency with radius. Both thermal and dynamic buoyancy do not signi?cantly correlate with vertically averaged vertical mass ?uxes.This also leads to no signi?cant correlation between the total buoyancy and vertical mass ?uxes of outer-core updrafts.
引文
Braun,S.A.2002.“A Cloud-Resolving Simulation of Hurricane Bob(1991):Storm Structure and Eyewall Buoyancy.”Monthly Weather Review 130(6):1573-1592.doi:10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.
    DeMaria,M.1996.“The Effect of Vertical Shear on Tropica Cyclone Intensity Change.”Journal of the Atmospheric Sciences 53(14):2076-2087.doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.
    Dunion,J.P.2011.“Rewriting the Climatology of the Tropica North Atlantic and Caribbean Sea Atmosphere.”Journal of Climate 24(3):893-908.doi:10.1175/2010JCLI3496.1.
    Eastin,M.D.,W.M.Gray,and P.G.Black.2005a.“Buoyancy of Convective Vertical Motions in the Inner Core of Intense Hurricanes.Part I:General Statistics.”Monthly Weather Review 133(1):188-208.doi:10.1175/MWR-2848.1.
    Eastin,M.D.,W.M.Gray,and P.G.Black.2005b.“Buoyancy of Convective Vertical Motions in the Inner Core of Intense Hurricanes.Part II:Case Studies.”Monthly Weather Review133(1):209-227.doi:10.1175/MWR-2849.1.
    Emanuel,K.A.1986.“An Air-Sea Interaction Theory for Tropica Cyclones.Part I.:Steady-State Maintenance.”Journal of the Atmospheric Sciences 43:585-604.doi:10.1175/1520-0469-(1986)043<0585:AASITF>2.0.CO;2.
    Gu,J.-F.,Z.-M.Tan,and X.Qiu.2016.“Quadrant-Dependent Evolution of Low-Level Tangential Wind of a Tropica Cyclone in the Shear Flow.”Journal of the Atmospheric Sciences 73(3):1159-1177.doi:10.1175/JAS-D-15-0165.1.
    Hazelton,A.T.,R.E.Hart,and R.F.Rogers.2017.“Analyzing Simulated Convective Bursts in Two Atlantic Hurricanes Part II:Intensity Change Due to Bursts.”Monthly Weather Review 145(8):3095-3117.doi:10.1175/MWR-D-16-0268.1.
    Hence,D.A.,and R.A.Houze.2008.“Kinematic Structure of Convective-Scale Elements in the Rainbands of Hurricanes Katrina and Rita(2005).”Journal of Geophysical Research113:D15108.doi:10.1029/2007JD009429.
    Hendricks,E.A.,M.T.Montgomery,and C.A.Davis.2004.“The Role of“Vortical”Hot Towers in the Formation of Tropica Cyclone Diana(1984).”Journal of the Atmospheric Sciences61(11):1209-1232.doi:10.1175/1520-0469(2004)061<1209TROVHT>2.0.CO;2.
    Houze,R.A.2014.Cloud Dynamics,432.Kidlington,Oxford UK:Academic Press.
    Jiang,H.2012.“The Relationship between Tropical Cyclone Intensity Change and the Strength of Inner-Core Convection.”Monthly Weather Review 140(4):1164-1176.doi:10.1175/MWR-D-11-00134.1.
    Jones,S.C.1995.“The Evolution of Vortices in Vertical Shear.Part IInitially Barotropic Vortices.”Quarterly Journal of the Roya Meteorological Society 121(524):821-851.doi:10.1002/qj.49712152406.
    Li,Q.,and Y.Wang.2012a.“Formation and Quasi-Periodic Behavior of Outer Spiral Rainbands in a Numerically Simulated Tropical Cyclone.”Journal of the Atmospheric Sciences 69(3):997-1020.doi:10.1175/2011JAS3690.1.
    Li,Q.,and Y.Wang.2012b.“A Comparison of Inner and Outer Spiral Rainbands in A Numerically Simulated Tropica Cyclone.”Monthly Weather Review 140(9):2782-2805doi:10.1175/MWR-D-11-00237.1.
    Li,Q.,Y.Wang,and Y.Duan.2017.“A Numerical Study of Outer Rainband Formation in A Sheared Tropical Cyclone.”Journal of the Atmospheric Sciences 74(1):203-227doi:10.1175/JAS-D-16-0123.1.
    Montgomery,M.T.,M.E.Nicholls,T.A.Cram,and A.Saunders2006.“A Vortical Hot Tower Route to Tropical Cyclogenesis.”Journal of the Atmospheric Sciences 63(1):355-386.doi:10.1175/JAS3604.1.
    Nguyen,L.T.,and J.Molinari.2012.“Rapid Intensification of a Sheared,Fast-Moving Hurricane over the Gulf Stream.”Monthly Weather Review 140(10):3361-3378.doi:10.1175/MWR-D-11-00293.1.
    Riemer,M.,M.T.Montgomery,and M.E.Nicholls.2010“A New Paradigm for Intensity Modification of Tropica Cyclones.”Atmospheric Chemistry and Physics 10(7)3163-3188.Source:DOAJ.doi:10.5194/acpd-9-10711-2009.
    Rios-Berrios,R.,and R.D.Torn.2017.“Climatological Analysis of Tropical Cyclone Intensity Changes under Moderate Vertical Wind Shear.”Monthly Weather Review 145(5)1717-1738.doi:10.1175/MWR-D-16-0350.1.
    Rogers,R.,S.-C.Chen,J.Tenerelli,and H.Willoughby.2003“A Numerical Study of the Impact of Vertical Shear on the Distribution of Rainfall in Hurricane Bonnie(1998).”Monthly Weather Review 131(8):1577-1599.doi:10.1175/2009JAS3122.1.
    Shelton,K.,and J.Molinari.2009.“Life of a 6-Hour Hurricane.”Monthly Weather Review 137(1):51-67.doi:10.1175/2008MWR2472.1.
    Simpson,J.,J.B.Halverson,B.S.Ferrier,W.A.Peterson R.H.Simpson,R.Blackeslee,and S.L.Durden.1998.“On the Role of‘Hot Towers’in Tropical Cyclone Formation.”Meteorology and Atmospheric Physics 67(1-4):15-35doi:10.1007/BF01277500.
    Smith,R.K.,M.T.Montgomery,and H.Zhu.2005.“Buoyancy in Tropical Cyclones and Other Rapidly Rotating Atmospheric Vortices.”Dynamics of Atmospheres and Oceans 40(3)189-208.doi:10.1016/j.dynatmoce.2005.03.003.
    Stern,D.P.,G.H.Bryan,and S.D.Aberson.2016.“Extreme Low-Level Updrafts and Wind Speeds Measured by Dropsondes in Tropical Cyclones.”Monthly Weather Review144(6):2177-2204.doi:10.1175/MWR-D-15-0313.1.
    Tao,C.,and H.Jiang.2013.“Global Distribution of Hot Towers in Tropical Cyclones Based on 11-Yr TRMM Data.”Journal of Climate 26(4):1371-1386.doi:10.1175/JCLI-D-12-00291.1.
    Terwey,W.D.,and C.M.Rozoff.2014.“Objective Convective Updraft Identification and Tracking:Part 1Structure and Thermodynamics of Convection in the Rainband Regions of Two Hurricane Simulations.”Journal of Geophysical Research 119(11):6470-6496doi:10.1002/2013JD020904.
    Wang,Y.2001.“An Explicit Simulation of Tropical Cyclones with a Triply Nested Movable-Mesh Primitive Equation Model:TCM3.Part I:Model Description and Contro Experiment.”Monthly Weather Review 129(6)1370-1394.doi:10.1175/1520-0493(2001)129<1370AESOTC>2.0.CO;2.
    Wang,Y.2007.“A Multiply Nested,Movable Mesh,Fully Compressible,Nonhydrostatic Tropical Cyclone ModelTCM4:Model Description and Development of Asymmetries without Explicit Asymmetric Forcing.”Meteorology and Atmospheric Physics 97(1-4):93-116.doi:10.1007/s00703-006-0246-z.
    Wang,Y.2008.“Rapid Filamentation Zone in a Numerically Simulated Tropical Cyclone.”Journal of the Atmospheric Sciences 65(4):1158-1181.doi:10.1175/2007JAS2426.1.
    Wang,Y.2009.“How Do Outer Spiral Rainbands Affect Tropica Cyclone Structure and Intensity?”Journal of the Atmospheric Sciences 66(5):1250-1273.doi:10.1175/2008JAS2737.1.
    Wang,Y.,Y.Rao,Z.-M.Tan,and D.Sch?nemann.2015“A Statistical Analysis of the Effects of Vertical Wind Shear on Tropical Cyclone Intensity Change over the Western North Pacific.”Monthly Weather Review 143(9)3434-3453.doi:10.1175/MWR-D-15-0049.1.
    Zeng,Z.,Y.Wang,and L.Chen.2010.“A Statistical Analysis of Vertical Shear Effect on Tropical Cyclone Intensity Change in the North Atlantic.”Geophysical Research Letters 37(2)L02802.doi:10.1029/2009GL041788.
    Zhang,D.-L.,Y.Liu,and M.K.Yau.2000.“A Multiscale Numerical Study of Hurricane Andrew(1992).Part IIIDynamically Induced Vertical Motion.”Monthly Weather Review 128(11):3772-3788.doi:10.1175/1520-0493(2001)129<3772:AMNSOH>2.0.CO;2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700