QUASI STEADY-STATE HURRICANES REVISITED
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:QUASI STEADY-STATE HURRICANES REVISITED
  • 作者:JOHN ; PERSING ; MICHAEL ; T.MONTGOMERY ; ROGER ; K.SMITH ; JAMES ; C.MCWILLIAMS
  • 英文作者:JOHN PERSING;MICHAEL T.MONTGOMERY;ROGER K.SMITH;JAMES C.MCWILLIAMS;Department of Meteorology, Naval Postgraduate School;Meteorological Institute, Ludwig-Maximilians University of Munich;Department of Atmospheric and Oceanic Sciences, University of California at Los Angeles;
  • 英文关键词:tropical cyclones;;steady-state;;angular momentum
  • 中文刊名:TCRR
  • 英文刊名:热带气旋研究与评论(英文版)
  • 机构:Department of Meteorology, Naval Postgraduate School;Meteorological Institute, Ludwig-Maximilians University of Munich;Department of Atmospheric and Oceanic Sciences, University of California at Los Angeles;
  • 出版日期:2019-03-15
  • 出版单位:Tropical Cyclone Research and Review
  • 年:2019
  • 期:v.8
  • 基金:the support of NSF grant IAA-1313948;; NASA grants NNH09AK561 and NNG09HG031;; supported in part by Grant SM 30/23-1 from the German Research Council (DFG);; by the Office of Naval Research Global under Grant N6290915-1-N021
  • 语种:英文;
  • 页:TCRR201901001
  • 页数:17
  • CN:01
  • 分类号:4-20
摘要
We revisit the theoretical possibility of long-term, sustained tropical cyclone solutions using a state-of-the-art numerical model that incorporates the most recent observational guidance for subgrid scale parameters and airsea exchange coefficients of heat and momentum. Emphasis is placed on the realism of such solutions and the sources of cyclonic relative angular momentum(RAM) that are necessary to replenish that lost by friction at the surface. For simplicity, we confine our attention to strictly axisymmetric numerical experiments.We are able to replicate Hakim's long-term simulation of a quasi-steady state cyclone in a 1500 km radial domain. The structure of the wind field is found to be somewhat realistic compared to observations, but sustained by unrealistic processes. Artificial sources of cyclonic RAM are quantified and the lateral damping of the anticyclonic wind near the outer boundary is found to make the largest contribution to the source of cyclonic RAM. When the domain size is extended to 9,000 km radius and lateral damping is removed altogether, a quasi-steady vortex emerges, but the structure of this vortex has many unrealistic features. In this solution, the remaining upper-level Rayleigh damping contributes a major portion of the needed source of cyclonic RAM. In a simulation in which the upper-level damping is removed also, the solution is found to be neither quasi-steady nor realistic.These findings call into question the realism of long-term, sustained tropical cyclone simulations, which require a sufficiently large source of cyclonic RAM to facilitate the existence of a quasi-steady state.
        We revisit the theoretical possibility of long-term, sustained tropical cyclone solutions using a state-of-the-art numerical model that incorporates the most recent observational guidance for subgrid scale parameters and airsea exchange coefficients of heat and momentum. Emphasis is placed on the realism of such solutions and the sources of cyclonic relative angular momentum(RAM) that are necessary to replenish that lost by friction at the surface. For simplicity, we confine our attention to strictly axisymmetric numerical experiments.We are able to replicate Hakim's long-term simulation of a quasi-steady state cyclone in a 1500 km radial domain. The structure of the wind field is found to be somewhat realistic compared to observations, but sustained by unrealistic processes. Artificial sources of cyclonic RAM are quantified and the lateral damping of the anticyclonic wind near the outer boundary is found to make the largest contribution to the source of cyclonic RAM. When the domain size is extended to 9,000 km radius and lateral damping is removed altogether, a quasi-steady vortex emerges, but the structure of this vortex has many unrealistic features. In this solution, the remaining upper-level Rayleigh damping contributes a major portion of the needed source of cyclonic RAM. In a simulation in which the upper-level damping is removed also, the solution is found to be neither quasi-steady nor realistic.These findings call into question the realism of long-term, sustained tropical cyclone simulations, which require a sufficiently large source of cyclonic RAM to facilitate the existence of a quasi-steady state.
引文
Abarca,S.F.and M.T.Montgomery,2014:Are eyewall replacement cycles governed largely by axisymmetric balance dynamics?J.Atmos.Sci.,72,82--87.
    Anthes,R.A.,1982:Tropical cyclones:Their evolution,structure,and effects.Meteor.Monogro.No.41,Amer.Meteor.Soc.,pp208.
    Bell,M.M.,M.T.Montgomery,and W.C.Lee,2012:An axisymmetric view of concentric eyewall evolution in Hurricane Rita(2005).J.Atmos.Sci.,69,2414--2432.
    Bister,M.,N.Renno,O.Pauluis,and K.Emanuel,2011:Comment on Makarieva et al.‘A critique of some modern applications of the Carnot heat engine concept:The dissipative heat engine cannot exist.’Proc.R.Soc.A.,467,1--6.
    Black,P.G.,E.A.D'Asaro,T.B.Sanford,W.M.Drennan,J.A.Zhang,J.R.French,P.P.Niiler,E.J.Terrill,and E.J.Walsh,2007:Air-sea exchange in hurricanes:Synthesis of observations from the coupled boundary layer air-sea transfer experiment.Bull.Amer.Meteorol.Soc.,88,357--374.
    Brown,B.R.and G.J.Hakim,2013:Variability and predictability of a three-dimensional hurricane.J.Atmos.Sci.,70,1806--1820.
    Bryan,G.H.and J.M.Fritsch,2002:A benchmark simulation for moist non-hydrostatic numerical model.Mon.Wea.Rev.,130,2917--2928.
    Bryan,G.H.and R.Rotunno,2009a:Evaluation of an analytical model for the maximum intensity of tropical cyclones.J.Atmos.Sci.,66,3042--3060.
    ---2009b:The influence of near-surface,high entropy air in hurricane eyes on maximum hurricane intensity.J.Atmos.Sci.,66,148--158.
    Camargo,S.J.,M.K.Tippett,A.H.Sobel,G.A.Vecchi,and M.Zhao,2014:Testing the performance of tropical cyclone genesis indices in future climates using the hiram model.J.Climate,27,9171--9196,DOI:10.1175/JCLI-D-13-00505.1.
    Chavas,D.R.and K.A.Emanuel,2010:A QuikSCAT climatology of tropical cyclone size.Geo.Res.Letts.,37,DOI:10.1029/2010GL044558.
    Chavas,D.R.and K.A.Emanuel,2014:Equilibrium tropical cyclone size in an idealized state of radiative-convective equilibrium.J.Atmos.Sci.,71,1663--1680.
    Chou,M.D.and M.J.Suarez,1994a:An efficient thermal infrared radiation parameterization for use in general circulation models.Technical Memorandum 3,Technical Report Series on Global Modeling and Data Assimilation,NASA Tech.Rep.TM-1994-104606,Goddard Space Flight Center,Greenbelt,MD,USA.
    ---1994b:A solar radiation parameterization(CLIRAD-SW)developed at Goddard Climate and Radiation Branch for Atmospheric Studies.Technical Memorandum 15,Technical Report Series on Global Modeling and Data Assimilation,NASA Tech.Rep.TM-1999-104606,NASA Goddard Space Flight Center,Greenbelt,MD,USA.
    Emanuel,K.A.,1986:An air-sea interaction theory for tropical cyclones.Part I:Steady state maintenance.J.Atmos.Sci.,43,585--604.
    ---1988:The maximum intensity of hurricanes.J.Atmos.Sci.,45,1143--1155.
    ---2003:Tropical cyclones.Annu.Rev.Earth Planet.Sci.,31,75--104.
    ---2004:Tropical cyclone energetics and structure.Atmospheric Turbulence and Mesoscale Meteorology,E.Fedorovich,R.Rotunno,and B.Stevens,eds.,Cambridge University Press,Cambridge.
    Frisius,T.,2015:What controls the size of a tropical cyclone?Investigations with an axisymmetric model.Q.J.R.Meteorol.Soc.,DOI:10.1002/qj.2537.
    Frisius,T.and D.Sch?nemann,2012:An extended model for the potential intensity of tropical cyclones.J.Atmos.Sci.,69,641--661.
    Frisius,T.and U.Wacker,2007:Das massenkonsistente axialsymmetrische Wolkenmodell HURMOD.Wissenschaftliche Dokumentation DWD,Offenbach am Main,Germany.
    Garner,S.,2015:The relationship between hurricane potential intensity and CAPE.J.Atmos.Sci.,72,141--163.
    Hakim,G.J.,2011:The mean state of axisymmetric hurricanes in statistical equilibrium.J.Atmos.Sci.,37,515--533.
    Haus,B.K.,D.Jeong,M.A.Donelan,and J.A.Zhang,2010:Relative rate of sea-air heat transfer and frictional drag in very high winds.Geophys.Res.Lett.,37,l07802,DOI:10.1029/2009GL042206.
    Huang,Y.-H.,M.T.Montgomery,and C.-C.Wu,2012:Concentric eyewall formation in Typhoon Sinlaku(2008)-Part II:Axisymmetric dynamical processes.J.Atmos.Sci.,69,662--674.
    Joint Typhoon Warning Center,1960:1960 Annual Tropical Cyclone Report,pp.219.
    Khairoutdinov,M.and K.Emanuel,2013:Rotating radiativeconvective equilibrium simulated by a cloud-resolving model.J.Adv.Modeling Earth Sys.,5,816--825,doi:10.1002/2013MS000253.
    Kilroy,G.,R.K.Smith,and M.T.Montgomery,2016:Why do tropical cyclones grow progressively in size and decay in intensity after reaching maturity?J.Atmos.Sci.,73,487--503.
    Lilly,D.K.,1962:On the numerical simulation of buoyant convection.Tellus,14,148--172.
    Lindzen,R.A.,1990:Dynamics in Atmospheric Physics.Cambridge University Press,Cambridge.
    Marks,F.D.,P.G.Black,M.T.Montgomery,and R.W.Burpee,2008:Structure of the eye and eyewall of Hurricane Hugo(1989).Mon.Wea.Rev.,136,1237--1259.
    Montgomery,M.T.and R.K.Smith,2014:Paradigms for tropical cyclone intensification.Aust.Meteor.Ocean.J.,64,37--66.
    Persing,J.and M.T.Montgomery,2003:Hurricane superintensity.J.Atmos.Sci.,60,2349--2371.
    Persing,J.,M.T.Montgomery,J.C.McWilliams,and R.K.Smith,2013:Asymmetric and axisymmetric dynamics of tropical cyclones.Atmos.Chem.Phys.,13,12299--12341.
    Rotunno,R.and K.A.Emanuel,1987:An air-sea interaction theory for tropical cyclones.Part II:Evolutionary study using a nonhydrostatic axisymmetric numerical model.J.Atmos.Sci.,44,542--561.
    Schmidt,C.W.and R.K.Smith,2016:Tropical cyclone evolution in a minimal axisymmetric model revisited.Q.J.R.Meteorol.Soc.,91,99--164.
    Smagorinsky,J.,1963:General circulation experiments with the primitive equations.I:The basic experiment.Mon.Wea.Rev.,91,99--164.
    Smith,R.K.,M.T.Montgomery,and J.Persing,2014:On steady-state tropical cyclones.Quart.J.Roy.Meteor.Soc.,DOI:10.1002/qj.2329.
    Smith,R.K.,M.T.Montgomery,and S.Vogl,2008:A critique of Emanuel's hurricane model and potential intensity theory.Quart.J.Roy.Meteor.Soc.,134,551--561.
    Tao,W.K.and J.Simpson,1993:Goddard cumulus ensemble model.Part I:Model description.Terr.Atmos.Oceanic Sci.,4,35--72.
    Willoughby,H.E.,J.A.Clos,and M.G.Shoreibah,1982:Concentric eye walls,secondary wind maxima,and the evolution of the hurricane vortex.J.Atmos.Sci.,39,395--411.
    Zhang,J.A.,W.M.Drennan,P.G.Black,and J.R.French,2007:Turbulence structure of the hurricane boundary layer between the outer rainbands.J.Atmos.Sci.,66,2455--2467.
    Zhang,J.A.and M.T.Montgomery,2012:Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes.J.Atmos.Sci.,69,1306--1316.
    Zhang,J.A.,R.F.Rogers,D.S.Nolan,and F.D.Marks Jr.,2011:On the characteristic height scales of the hurricane boundary layer.Mon.Wea.Rev.,139,2523--2535.
    Zhuo,W.,I.M.Held,and S.T.Garner,2014:Parameter study of tropical cyclones in rotating radiative-convective equilibrium with column physics and resolution of a 25-km GCM.J.Atmos.Sci.,71,1058--1069.
    1The origin of the upper-level tangential wind maximum, namely an annular cyclonic jet contained within the eye, appears to be subtle and complex, but beyond the scope of the present study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700