蕹菜耐受长时间高温后的miRNA分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of miRNA in Water Spinach (Ipomoea aquatica) Under Long-time High Temperature
  • 作者:王杏茹 ; 李文静 ; 陈冰星 ; 刘涛 ; 尚维 ; 赖钟雄 ; 郭容芳
  • 英文作者:WANG Xingru;LI Wenjing;CHEN Bingxing;LIU Tao;SHANG Wei;LAI Zhongxiong;GUO Rongfang;Joint FAFU-Dalhousie Lab,Fujian Agriculture and Forestry University;Institute of Horticultural Biotechnology,Fujian Agriculture and Forestry University;
  • 关键词:蕹菜 ; 长时间高温 ; miR160 ; miR166 ; miR393
  • 英文关键词:Ipomoea aquatica;;long-time high temperature;;miR160;;miR166;;miR393
  • 中文刊名:YYXB
  • 英文刊名:Acta Horticulturae Sinica
  • 机构:福建农林大学戴尔豪西大学联合实验室;福建农林大学园艺植物生物工程研究所;
  • 出版日期:2018-11-30 16:26
  • 出版单位:园艺学报
  • 年:2019
  • 期:v.46
  • 基金:福建农林大学园艺博士后启动经费项目(132300155);; 中国博士后科学基金项目(2017T100464)
  • 语种:中文;
  • 页:YYXB201903008
  • 页数:13
  • CN:03
  • ISSN:11-1924/S
  • 分类号:83-95
摘要
miRNA是广泛存在于真核生物体内的一类长度为20~24 nt的小分子非编码RNA,在植物生长发育和逆境适应过程中发挥重要作用。蕹菜(Ipomoea aquatica)可以耐受长时间高温,而其miRNA还未被鉴定,其在耐受长时间高温后的作用还未知。以蕹菜耐热性强的品种‘泰国三叉’和耐热性差的品种‘柳叶’为材料,经42℃高温处理15d后分别构建两个高质量sRNA库,经检测两个库中碱基质量值大于或等于30的序列数量均超过17.3Mb,且‘泰国三叉’中24nt的序列数量远远高于‘柳叶’。与蕹菜转录组比对分析后,分别得到1 363 258和1 629 209条序列,两个库共有的序列仅有1 047 133条(11.36%),说明耐热性不同的蕹菜中s RNA有很大差别。共鉴定出蕹菜中存在71个miRNA,其中差异表达的有22个,通过TargetFinder预测其靶基因,共得到233个靶基因。进一步以耐热性强的品种‘本地三叉’和耐热性弱的品种‘竹叶’为材料研究其在长时间高温后miR160、miR166、miR172、miR393和miR3627前体的差异表达量,结果表明,高温后两品种中pre-miR160-2的表达都显著上调,但是不耐热的‘竹叶’中上调的倍数更多;mi R166在耐热性强的‘本地三叉’中表达量下降,在耐热性较差的‘竹叶’中表达量显著上升;miR172可以被长时间高温诱导,但在耐热性不同的两个品种蕹菜中并没有差异;miR3627的表达量在耐热蕹菜‘本地三叉’中下降,在不耐热蕹菜‘竹叶’中没有明显变化。miRNA前体表达模式的差异说明其在蕹菜耐受长时间高温过程中的作用机制不同。
        miRNAs are small non-coding RNAs of 20–24 nt widely present in eukaryotes and play important roles in plant growth and stress adaptation. Water spinach(Ipomoea aquatica)can tolerate prolonged high temperature. However,miRNAs in water spinach have not yet been identified and their role in long-time high temperature is still unknown. In this paper,taking highly heat-resistant‘Taiguo Sancha'and poorly heat-resistant‘Liuye'as material,two high-quality sRNA pools were constructed after treatment with 42 ℃ for 15 days. The number of high-quality sequences both exceeded 17.3 Mb,and the number of 24 nt clean reads in‘Taiguo Sancha'was much higher than that of‘Liuye'. After comparison with water spinach's transcriptome,1 363 258 and 1 629 209 sequences were obtained respectively. The two libraries shared 1 047 133(11.36%)unique reads,indicating that sRNAs varied in cultivars with different heat resistance. A total of 71 miRNAs were identified in water spinach,of which 22 were differentially expressed. The target genes were predicted by TargetFinder and a sum of 233 target genes were obtained. In addition,water spinach‘Bendi Sancha'with strong-heat-resistance and weakly heat-resistant‘Zhuye'were used as materials to study the expression levels of pre-miR160,pre-miR166,pre-miR172,pre-miR393,and pre-miR3627 that were differentially expressed after long-time high temperature treatment. The results showed that the expression of pre-miR160-2 in‘Bendi Sancha'and‘Zhuye'increased significantly,but in different levels;the expression of miR166 was decreased in‘Bendi Sancha'but increased significantly in‘Zhuye';miR172 could be induced by high temperature,however,there was no difference in the two cultivars;the expression of miR3627 was decreased in‘Bendi Sancha'after high temperature treatment while there was no obvious change in‘Zhuye'. The difference in the expression patterns of miRNA precursors suggests that the mechanism of miRNA is different during long-term high temperature in water spinach.
引文
Allen E,Xie Z,Gustafson A M.Carrington J C.2005.microRNA-directed phasing during trans-acting siRNA biogenesis in plants.Cell,121(2):207-221.
    Apweller R,Bairoch A,Wu C H,Barker W C,Boeckmann B,Ferro S,Gasteiger E,Huang H Z,Lopez R,Magrane M,Martin M J,Natale D A,O'Donovan C,Redaschi N,Yeh L S L.2004.UniProt:the universal protein knowledgebase.Nucleic Acids Research,32(Database issue):D115-D119.
    Bartel D P.2004.MicroRNAs:genomics,biogenesis,mechanism,and function.Cell,116(2):281-297.
    Chen Si,Chen Wei,Pang Ji-liang.2016.Research progress of miRNAs in regulating plant growth and development.North horticulture,5:200-206.(in Chinese)陈思,陈薇,庞基良.2016.miRNAs调控植物生长发育的研究进展.北方园艺,5:200-206.
    Chen X.2005.MicroRNA biogenesis and function in plants.Febs Letters,579(26):5923-5931.
    Cuperus J T,Fahlgren N,Carrington J C.2011.Evolution and functional diversification of MIRNA genes.Plant Cell,23(2):431-442.
    Damodharan S,Zhao D,Arazi T.2016.A common miRNA160‐based mechanism regulates ovary patterning,floral organ abscission and lamina outgrowth in tomato.Plant Journal for Cell&Molecular Biology,86(6):458-471.
    Deng Y Y,Li J Q,Wu S F,Zhu Y P,Chen Y W,He F C.2006.Integrated nr database in protein annotation system and its localization.Computer Engineering,32(5):71-72.
    Eddy S R.1998.Profile hidden Markov models.Bioinformatics,14(9):755-763.
    Fahlgren N,Howell M D,Kasschau K D,Chapman E J,Sullivan C M,Cumbie J S,Givan S A,Law T F,Grant S R,Dangl J L,Carrington J C.2007.High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes.Plos One,2(2):e219.
    Friedl?nder M R,Mackowiak S D,Li N,Chen W,Rajewsky N.2012.miRDeep2 accurately identifies known and hundreds of novel microRNAgenes in seven animal clades.Nucleic Acids Research,40(1):37-52.
    Guo R F,Deng Y P,Huang Z K,Chen X D,Xuhan X,Lai Z X.2016.Identification of miRNAs affecting the establishment of Brassica alboglabra Seedling.Frontiers in Plant Science,7:1760.
    Kanehisa M,Goto S,Kawashima S,Okuno Y,Hattori A M.2004.The KEGG resource for deciphering the genome.Nucleic Acids Research,32(Datebase issne):D277.
    Koonin E V,Fedorova N D,Jackson J D,Jacobs A R,Krylov D M,Makarova K S,Mazumder R,Mekhedov S L,Nikolskaya A N,Rao B S,Rogozin I B,Smirnov S,Sorokin A V,Sverdlov A V,Vasudevan S,Wolf Y I,Yin J J,Natale D A.2004.A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.Genome Biology,5(2):R7.
    Kruszka K,Pacak A,Swida-Barteczka A,Nuc P,Alaba S,Wroblewska Z,Karlowski W,Jarmolowski A,Szweykowska-Kulinska Z.2014.Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley.Journal of Experimental Botany,65:6123-6135.
    Langmead B,Trapnell C,Pop M,Salzberg S L.2009.Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.Genome Biology,10(3):R25.
    Lin J S,Kuo C C,Yang I C,Tsai W A,Shen Y H,Lin C C,Liang Y C,Li Y C,Kuo Y W,King Y C,Lai H M,Jeng S T.2018.MicroRNA160modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis.Frontiers in Plant Science,9:68.
    Liu P P,Montgomery T A,Fahlgren N,Kasschau K D,Nonogaki H,Carrington J C.2007.Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages.Plant Journal,52(1):133-146.
    Liu X,Dong X F,Liu Z H,Shi Z H,Jiang Y,Qi M F,Xu T,Li T L.2016.Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss.Plant Molecular Biology,92(3):313-336.
    Lu X,Guan Q,Zhu J.2013.Downregulation of CSD2 by a heat-inducible miR398 is required for thermotolerance in Arabidopsis.Plant Signaling&Behavior,8(8),e24952.
    Mathieu J,Yant L J,Mürdter F,Küttner F,Markus S.2009.Repression of flowering by the miR172 target SMZ.Plos Biology,7(7):e1000148.
    Mou Hui-fang,Qi Wen-wen,Liu Yan-ling,Li Yi,Wu Ying.2016.MicroRNAs are involved in regulating plants to resist pathogenic microorganisms.Modern Agriculture Science and Technology,(23):144-147.(in Chinese)牟慧芳,齐雯雯,刘艳玲,李毅,吴莹.2016.microRNA参与调控植物抵御病原微生物的研究进展.现代农业科技,(23):144-147.
    Navarro L,Dunoyer P,Jay F,Arnold B,Dharmasiri N,Estelle M,Voinnet O,Jones J D.2006.A plant miRNA contributes to antibacterial resistance by repressing auxin signaling.Science,312(5772):436-439.
    Pinweha N,Asvarak T,Viboonjun U,Narangajavana J.2015.Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease.Journal of Plant Physiology,174:26-35.
    Robert-Seilaniantz A,MacLean D,Jikumaru Y,Hill L,Yamaguchi S,Kamiya Y,Jones J D.2011.The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates.Plant Journal,67:218-231.
    Romualdi C,Bortoluzzi S,D'Alessi F,Danieli G A.2003.IDEG6:a web tool for detection of differentially expressed genes in multiple tag sampling experiments.Physiological Genomics,12(2):159-162.
    Si-Ammour A,Windels D,Arn-Bouldoires E,Kutter C,Ailhas J,Meins F,Vazquez F.2011.miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves.Plant Physiology,157(2):683-691.
    Tatusov R L,Galperin M Y,Natale D A,Koonin E V.2000.The cog database:a tool for genome-scale analysis of protein functions and evolution.Nucleic Acids Research,28(1):33-36.
    Valiollahi E,Farsi M,Kakhki A M.2014.Sly-miR166 and Sly-miR319 are components of the cold stress response in Solanum lycopersicum.Plant Biotechnology Reports,8(4):349-356.
    Vidal E A,Araus V,Lu C,Parry G,Green P J,Coruzzi G M,Gutiérrez R A.2010.Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana.Proceedings of the National Academy of Sciences,107(9):4477-4482.
    Wahid A,Gelani S,Ashraf M,Foolad M R.2007.Heat tolerance in plants:an overview.Environmental Experimental Botany,61(3):199-223.
    Wang Bing-liang,Xu Min,Shi Qing-hua,Cao Jia-shu.2004.Effects of high temperature stress on antioxidant system,chlorophyll and fluorescence parameters of early maturity cauliflower leaves.Chinese Agricultural Science,37(8):1245-1250.(in Chinese)汪炳良,徐敏,史庆华,曹家树.2004.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响.中国农业科学,37(8):1245-1250.
    Wang Xi-qiang.2010.High quality and high yield cultivation techniques of water spinach.Modern Agricultural Technology,21:128-128.(in Chinese)王希强.2010.空心菜优质高产栽培技术.现代农业科技,21:128-128.
    Wang Ze-wen.2013.Differential expression analysis of miRNAs in rice response to high temperature stress[M.D.Dissertation].Hefei:Anhui Agricultural University.(in Chinese)王泽文.2013.水稻响应高温胁迫的miRNAs差异表达分析[硕士论文].合肥:安徽农业大学.
    Williams L,Grigg S P,Xie M,Christensen S,Fletcher J C.2005.Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes.Development,132(16):3657-3668.
    Wu G,Park M Y,Conway S R,Wang J W,Weigel D,Poething R S.2009.The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis.Cell,138(4):750-759.
    Xin M,Wang Y,Yao Y,Xie C,Peng H,Ni Z,Sun Q.2010.Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat(Triticum aestivum L.).Bmc Plant Biology,10(1):123.
    Zhao J,He Q,Gang C,Li W,Jin B.2016.Regulation of non-coding RNAs in heat stress responses of plants.Frontiers in Plant Science,7(273):1213
    Zhou Rong.2015.Evaluation of heat tolerance of tomato germplasm resources and microRNAs analysis of seedlings responding to heat stress[M.D.Dissertation].Nanjing:Nanjing Agricultural University.(in Chinese)周蓉.2015.番茄种质资源耐热性评价及幼苗响应热胁迫的microRNAs分析[硕士论文].南京:南京农业大学.
    Zhu H,Hu F,Wang R,Zhou X,Sze S H,Liou L W,Barefoot A,Dickman M,Zhang X.2011.Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development.Cell,145(2):242-256.
    Zhu Feng-jie,Liu Juan,Yu Nian-jun,Yuan Yuan,Huang Lu-qi.2017.Advances in the regulation of secondary metabolism by medicinal plants miRNA.Chemistry of life,6:1056-1064.(in Chinese)朱凤洁,刘娟,俞年军,袁媛,黄璐琦.2017.药用植物miRNA调控次生代谢的研究进展.生命的化学,6:1056-1064.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700