超高性能轻型组合桥面UHPC-沥青面层层间黏结性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bond Performances between Asphalt Surface and UHPC of Ultra-High Performance Lightweight Composite Decks
  • 作者:李嘉 ; 夏杨嘉玲 ; 王万鹏 ; 李树原
  • 英文作者:LI Jia;XIAYANG Jialing;WANG Wanpeng;LI Shuyuan;Key Laboratory for Wind and Bridge Engineering of Hunan Province,Hunan University;College of Civil Engineering,Hunan University;Guangdong Province Communications Planning & Design Institute Co,Ltd;Shanghai Municipal Engineering Design and Research Institute;Guangxi Communications Design Group Co,Ltd;
  • 关键词:道路工程 ; 黏结性能 ; 超高性能混凝土 ; 沥青面层 ; 有限元分析 ; 室内试验
  • 英文关键词:road engineering;;bond performances;;ultra-high performance concrete;;asphalt surface;;finite element analysis;;laboratory test
  • 中文刊名:HNDX
  • 英文刊名:Journal of Hunan University(Natural Sciences)
  • 机构:湖南大学风工程与桥梁工程湖南省重点实验室;湖南大学土木工程学院;广东省交通规划设计研究院股份有限公司;上海市政工程设计研究总院(集团)有限公司;广西交通设计集团有限公司;
  • 出版日期:2019-05-25
  • 出版单位:湖南大学学报(自然科学版)
  • 年:2019
  • 期:v.46;No.305
  • 基金:国家自然科学基金资助项目(51678229,51778223)~~
  • 语种:中文;
  • 页:HNDX201905002
  • 页数:10
  • CN:05
  • ISSN:43-1061/N
  • 分类号:16-25
摘要
UHPC下承层与沥青面层牢固黏结对延长桥面使用寿命,避免滑移、脱层等病害十分重要.采用有限元分析和室内试验,研究不同类型黏结剂、环境温度等对UHPC-沥青面层层间黏结性能的影响.复合试件剪切试验和拉拔试验表明:环境温度对UHPC-沥青面层层间强度有较大影响,高温(60℃)下层间黏结强度较常温(20℃)时有显著下降;KD-HYP环氧、202环氧较环氧沥青、壳牌HV、橡胶沥青表现出更佳的黏结性能;环氧沥青高温黏结性能优于壳牌HV、橡胶沥青,但常温下三者无明显差别.洞庭湖二桥有限元仿真计算得出,UHPC-SMA层间最大剪应力在20℃(常温)和60℃(高温)时分别为0.696MPa、0.422MPa,层间最大法向拉应力分别为0.167MPa、0.152MPa.研究表明,洞庭湖二桥在超载、紧急制动及动荷载等最不利荷载组合下,KD-HYP环氧和202环氧能满足常温和高温条件下层间黏结性能要求,并且具有足够的安全储备;而壳牌HV、橡胶沥青和环氧沥青无法满足高温层间黏结性能要求.
        It is important to guarantee strong bonding between UHPC and asphalt surface to prolong the service life and avoid the diseases of the bridge deck,such as slippage and delamination. Finite element analysis and laboratory tests were conducted to investigate the influences of kinds of binders and ambient temperatures on bonding performances. The test results showed that the ambient temperature had a great effect on the interface strength by shear and pull-off tests of composite specimens. Compared with normal temperature(20℃),the interface bonding performances had been decreased greatly at high temperature(60℃).Epoxy binders named KDHYP and 202 exhibited better bonding ability than epoxy asphalt,Shell HV and rubber asphalt. Although epoxy asphalt had higher bonding strength than Shell HV and rubber asphalt at high temperature,but there were no obvious differences among them at normal temperature. The finite element simulation of the second Dongting Lake Bridge showed that the maximum shear stress between UHPC-SMA was 0.696 MPa and 0.422 MPa respectively at 20℃(normal temperature) and 60℃(high temperature),and the maximum tensile stress was 0.167 MPa and 0.152 MPa respectively. The researches indicate that,under the most unfavorable load combinations consisting of overload,braking hardly and dynamic loads,KD-HYP and 202 can meet the requirements of interface bonding stresses,and are of sufficient safety at normal temperature and high temperature. But Shell HV,rubber asphalt and epoxy asphalt cannot do at high temperature.
引文
[1]黄卫.大跨径桥梁钢桥面铺装设计[J].土木工程学报,2007,40(9):65—77.HUANG W. Design of deck pavement for long-span steel bridges[J]. China Civil Engineering Journal,2007.40(9):65—77.(In Chinese)
    [2]童乐为,沈祖炎.正交异性钢桥面板疲劳验算[J].土木工程学报,2000,33(3):16—21.TONG L W,SHEN Z Y. Fatigue assessment of orthotropic steel bridge decks[J].China Civil Engineering Journal,2000,33(3):16—21.(In Chinese)
    [3]SHAO X D,YI D T,HUANG Z Y,et al. Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer[J].Journal of Bridge Engineering,2013,18(5)417—428.
    [4]邵旭东,张哲,刘梦麟,等.正交异性钢-RPC组合桥面板弯拉强度的实验研究[J].湖南大学学报(自然科学版),2012,39(10):7—13.SHAO X D,ZHANG Z,LIU M L,et al.Research on bending tensile strength for composite bridge deck system composed of orthotropic steel deck and thin RPC topping[J].Journal of Hunan University(Natural Sciences),2012,39(10):7—13.(In Chinese)
    [5]OZER H,AL-QADI I L,WANG H,et al.Characterisation of interface bonding between hot-mix asphalt overlay and concrete pavements:modelling and in-situ response to accelerated loading[J].International Journal of Pavement Engineering,2012,13(2):181—196.
    [6]ZHEN L,AL-QADI I L,CARPENTER S H,et al.Interface bonding between hot-mix asphalt and various Portland cement concrete surfaces laboratory assessment[J].Journal of the Transportation Research Board,2009,2057(1):46—53.
    [7]BOCCI E,CANESTRARI F.Experimental evaluation of shear resistance of improved steel-asphalt interfaces[J].Journal of the Transportation Research Board,2013,2370(1):145—150.
    [8]贾晓阳,李立寒.混凝土桥面沥青铺装粘结层抗剪设计方法[J].同济大学学报(自然科学版),2013,41(3):402-407.JIA X Y, LI L H.A design guide to shear resistance of bonding layer in concrete bridge deck asphalt pavement[J].Journal of Tongji University(Natural Science),2013,41(3):402—407.(In Chinese)
    [9]刘云,于新,戴忧华,等.混凝土箱梁桥铺装防水粘结层力学性能[J].同济大学学报(自然科学版),2012,40(1):57-61.LIU Y,YU X,DAI Y H,et al.Mechanical properties of waterproof adhesive layer on concrete box girder bridge[J].Journal of Tongji University(Natural Science),2012,40(1):57—61.(In Chinese)
    [10]李萍,念腾飞,张雅莉,等.基于斜剪试验的水泥砼桥面沥青铺装层抗剪切性能研究[J].武汉理工大学学报,2015,37(11):48—53.LI P,NIAN T F,ZHANG Y L,et al.Study on anti—shearing property of asphalt pavement for concrete bridge deck based on oblique shear test[J]. Journal of Wuhan University of Technology,2015,37(11):48—53.(In Chinese)
    [11]龙广成,谢友均,王培铭,等.活性粉末混凝土的性能与微细观结构[J].硅酸盐学报,2005,33(4):456—461.LONG G C,XIE Y J,WANG P M. Properties and micro/micro structure of reactive powder concrete[J].Journal of the Chinese Ceramic Society,2005,33(4):456—461.(In Chinese)
    [12]ASTM C882/C882M-13Standard test method for bond stress of epoxy-resin systems used with concrete by slant shear[S]. West Conshohocken,US:ASTM International,2013:1—4.
    [13]ASTM D7234-12 Standard test method for pull-off adhesion strength of coating using portable pull-off adhesion testers[S].West Conshohocken,US:ASTM International,2012:1—5.
    [14]张士红,邵旭东,曹君辉,等.轻型组合桥面板球扁钢纵肋-横隔板连接细节局部应力分析[J].土木工程学报,2016,49(12):97—107.ZHANG S H,SHAO X D,CAO J H,et al.Analysis on local stress at bulb flat rib-diaphragm connections in a lightweight composite bridge deck[J].China Civil Engineering Journal,2016,49(12):97—107.(In Chinese)
    [15]李嘉,曾玉,易笃韬,等.超高性能轻型组合桥面设计指标近似计算方法[J].湖南大学学报(自然科学版),2017,44(9):1—9.LI J,ZENG Y,YI D T,et al.Approximate calculation of design indices for high-performance lightweight composite bridge decks[J].Journal of Hunan University(Natural Sciences),2017,44(9):1—9.(In Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700