基于Morlet小波变换的自振射流瞬态特性影响因素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Instantaneous characteristics analysis of self-resonating water jet based on Morlet wavelet transformation
  • 作者:崔立华 ; 马飞 ; 蔡腾飞
  • 英文作者:CUI Li-hua;MA Fei;CAI Teng-fei;School of Mechanical Engineering,University of Science and Technology Beijing;
  • 关键词:机械设计 ; 自振射流 ; Morlet小波变换 ; 共振频率 ; 瞬时频率 ; 瞬时幅值 ; 反射压力波
  • 英文关键词:mechanical design;;self-resonating jet;;Morlet wavelet transform;;instantaneous frequency;;instantaneous amplitude;;reflect pressure wave
  • 中文刊名:JLGY
  • 英文刊名:Journal of Jilin University(Engineering and Technology Edition)
  • 机构:北京科技大学机械工程学院;
  • 出版日期:2019-01-15
  • 出版单位:吉林大学学报(工学版)
  • 年:2019
  • 期:v.49;No.201
  • 基金:国家自然科学基金项目(51774019);; “十三五”国家重点研发计划项目(2016YFC0802900)
  • 语种:中文;
  • 页:JLGY201901017
  • 页数:8
  • CN:01
  • ISSN:22-1341/T
  • 分类号:138-145
摘要
针对喷嘴腔内流体流动为典型的具有时变特性的非定常流动,提出采用时频分析方法对喷嘴腔内流体压力脉动信号进行分析。首先,通过Morlet小波变换联合小波脊线方法提取自振射流喷嘴腔内流体压力脉动信号的瞬时频率。然后,研究不同来流流速、不同来流扰动频率对喷嘴腔内流体压力脉动信号瞬时频率的影响。在此基础上,研究自振射流打击到打击靶上形成的反射压力波对喷嘴腔内流体瞬态特性的影响,以及不同靶距的影响。结果表明:本文方法可有效辨识来流扰动频率、来流流速对喷嘴腔内流体瞬态特性的影响,获取了试验用喷嘴的最优靶距范围,并辨识了反射压力波的影响,为研究自振射流瞬态特性的影响因素提供了有效手段。
        Self-resonating water jet is a typical non-stationary,time-varying signal.With regard of this characteristics,a time frequency analysis method is applied to analyze the pressure pulsation signal in the cavity.First,the Morlet wavelet transforms coupled with wavelet ridge is employed to acquire the instantaneous frequency of self-resonating water jet,and analyze the influences of different inflow velocities and different disturbance frequencies on the instantaneous frequency.Then,the reflect pressure wave is studied,which is generated by the self-resonating water jet impacting to different target distances.The results show that the employed method can identify how different inflow velocities and disturbance frequencies influence the instantaneous characteristics of the self-resonating water jet,obtain the optimal range of the target distance,also identify the influence of the reflectpressure wave.This work provides an effective method to study the influence factors of the instantaneous characteristics of self-resonating water jet.
引文
[1]Pei Jiang-hong.Study on the relation between oscillation frequency of self-excited oscillation pulsed water jet and self-excited pulsed water jet devices[J].Advanced Materials Research,2011,339:547-552.
    [2]Tang Chuan-lin,Hu Dong,Zhang Feng-hua.Study on the frequency characteristic of self-excited oscillation pulsed water jet[J].Advanced Materials Research,2011,317-319:1456-1461.
    [3]Annoni M,Cristaldi L,Lazzaroni M.Measurements,analysis,and interpretation of the signals from a high-pressure waterjet pump[J].IEEE Transactions on Instrumentation and Measurement,2008,57(1):34-47.
    [4]Hutli E A F,Nedeljkovic M S.Frequency in shedding/discharging cavitation clouds determined by visualization of a submerged cavitating jet[J].Journal of Fluids Engineering,2008,130(2):021304.
    [5]徐平平,柳靖,马飞,等.自振射流喷嘴腔内压力信号分析方法的研究[J].振动与冲击,2015,34(17):180-198.Xu Ping-ping,Liu Jing,Ma Fei,et al.Analysis methods for flow pressure signals in oscillation cavity of a self-resonating jet nozzle[J].Journal of Vibration and Shock,2015,34(17):180-198.
    [6]王萍辉,马飞.自激振动空化射流振动分析试验[J].机械工程学报,2009,45(10):89-95.Wang Ping-hui,Ma Fei.Vibration analysis experiment of self-resonating cavitating water jet[J].Journal of Mechanical Engineering,2009,45(10):89-95.
    [7]Liu Hai,Cao Shu-ping,Luo Xiao-hui.Study on the effect of inlet fluctuation on cavitation in a cone flow channel[J].J Fluids Eng,2015,137(5):513011-513017.
    [8]Baars W J,Talluru K M,Hutchins N,et al.Wavelet analysis of wall turbulence to study large-scale modulation of small scales[J].Experiments in Fluids,2015,56(10):188.
    [9]Baars W J,Hutchins N,Marusic I.Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers[J].Philosophical Transactions of the Royal Socity A—Mathematical Physical and Engineering Sciences,2017,375:20160077.
    [10]De Giorgi M G,Ficarella A,Tarantino M.Evaluating cavitation regimes in an internal orifice at different temperatures using frequency analysis and visualization[J].International Journal of Heat and Fluid Flow,2013,39:160-172.
    [11]申硕,胡东,刘曼,等.淹没条件下自激振荡脉冲水射流冲蚀试验研究[J].湖南工业大学学报,2013,27(3):41-45.Shen Shuo,Hu Dong,Liu Man,et al.Experimental study on self-excited oscillation pulsed water jet erosion under submerged conditions[J].Journal of Hunan University of Technology,2013,27(3):41-45.
    [12]Rajesh N,Veeraraghavan S,Babu N Ramesh.A novel approach for modelling of water jet peening[J].International Journal of Machine Tools and Manufacture,2004,44(7/8):855-863.
    [13]黄飞,卢义玉,汤积仁,等.超临界二氧化碳射流冲蚀页岩试验研究[J].岩石力学与工程学报,2015,34(4):787-794.Huang Fei,Lu Yi-yu,Tang Ji-ren,et al.Recherach on erosion of shale impacted by supercritical carbon dioxide jet[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(4):787-794.
    [14]马飞,蔡腾飞,柳靖,等.自振射流频率特性的试验研究[J].机械工程学报,2016,52(14):182-187.Ma Fei,Cai Teng-fei,Liu Jing,et al.Experimental study of self-resonating water jet frequency characteristics[J].Journal of Mechanical Engineering,2016,52(14):182-187.
    [15]Krzysztof Czarnecki.The instantaneous frequency rate spectrogram[J].Mechanical Systems and Signal Processing,2016,66,67:361-373.
    [16]Feng Zhi-peng,Liang Ming,Chu Fu-lei.Recent advances in time-frequency analysis methods for machinery fault diagnosis:a review with application examples[J].Mechanical Systems and Signal Processing,2013,38(1):165-205.
    [17]刘薇娜,周小龙,姜振海,等.基于最优特征的改进经验模态分解方法[J].吉林大学学报:工学版,2017,47(6):1957-1963.Liu Wei-na,Zhou Xiao-long,Jiang Zhen-hai,et al.Improved empirical mode decomposition method based on optimal feature[J].Journal of Jilin University(Engineering and Technology Edition),2017,47(6):1957-1963.
    [18]Liu Hai-yang,Huang Wei-guo,Wang Shi-bin,et al.Adaptive spectral kurtosis filtering based on Morlet wavelet and its application for signal transients detection[J].Signal Processing,2014,96:118-124.
    [19]张克军,窦建君.基于小波方向波变换和灰度共生矩阵的纹理图像检索[J].徐州工程学院学报:自然科学版,2016,31(4):65-69.Zhang Ke-jun,Dou Jian-jun.Texture image retrieval based on wavelet-directionlet transform and GLCM[J].Journal of Xuzhou Institute of Technology(Natural Sciences Edition),2016,31(4):65-69.
    [20]Qin Yi,Tang Bao-ping,Mao Yong-fang.Adaptive signal decomposition based on wavelet ridge and its application[J].Signal Processing,2016,120:480-494.
    [21]张克军,窦建君.基于Contourlet变换和不变矩的图像检索方法[J].徐州工程学院学报:自然科学版,2012,27(1):48-51.Zhang Ke-jun,Dou Jian-jun.The method of texture image retrieval based on Contourlet transform and moment invariants[J].Journal of Xuzhou Institute of Technology(Natural Sciences Edition),2012,27(1):48-51.
    [22]Hoshi Y,Yakabe N,Isobe K,et al.Wavelet transformation to determine impedance spectra of lithiumion rechargeable battery[J].Journal of Power Sources,2016,315:351-358.
    [23]Kuang Cui-ping,Su Ping,Gu Jie,et al.Multi-time scale analysis of runoff at the Yangtze estuary based on the Morlet wavelet transform method[J].Journal of Mountain Science,2014,11(6):1499-1506.
    [24]He Wei,Jiang Zhi-Nong,Feng Kun.Bearing fault detection based on optimal wavelet filter and sparse code shrinkage[J]. Measurement,2009,42(7):1092-1102.
    [25]Delprat Nathalie,Escudii Bernard,Guillemain Philippe,et al.Asymptotic wavelet and Gabor analysis:extraction of instantaneous frequencies[J].IEEE Transaction on Information,1992,38(2):644-664.
    [26]Leon Cohen.Time-frequency Analysis[M]:New Jersey:Prentice Hall,1995.
    [27]Hwang Wen L,Carmona Rene A.Characterization of signals by the ridges of their wavelet transforms[J].IEEE Transactions on Signal Processing,1997,45(10):2586-2590.
    [28]Dai Shao-shi,Younis Bassam A,Sun Li-ping.Large-Eddy simulations of cavitation in a square surface cavity[J].Applied Mathematical Modelling,2014,38(23):5638-5665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700