制备超级电容器氧化石墨烯的MPCVD方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of graphene oxide by MPCVD method for study of supercapacitors
  • 作者:郭冠伦 ; 欧阳康 ; 刘毅辉 ; 魏明锐
  • 英文作者:Guo Guanlun;Ouyang Kang;Liu Yihui;Wei Mingrui;Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University of Technology;Hubei Collaborative Innovation Center for Automotive Components Technology,Wuhan University of Technology;
  • 关键词:超级电容器 ; 氧化石墨烯 ; 电容 ; 循环伏安 ; 等离子体增强化学气相沉积
  • 英文关键词:supercapacitor;;graphene oxide;;capacitance;;cyclic voltammetry;;plasma enhanced chemical vapor deposition
  • 中文刊名:HZLG
  • 英文刊名:Journal of Huazhong University of Science and Technology(Natural Science Edition)
  • 机构:武汉理工大学现代汽车零部件技术湖北省重点实验室;武汉理工大学汽车零部件技术湖北省协同创新中心;
  • 出版日期:2018-03-23 10:03
  • 出版单位:华中科技大学学报(自然科学版)
  • 年:2018
  • 期:v.46;No.423
  • 基金:高等学校学科创新引智计划资助项目(B17034)
  • 语种:中文;
  • 页:HZLG201803023
  • 页数:5
  • CN:03
  • ISSN:42-1658/N
  • 分类号:133-137
摘要
以氢气、甲酸甲酯为原料,泡沫镍为基底,通过微波等离子体增强化学气相沉积(MPCVD)法,在450℃反应合成氧化石墨烯,将其作为超级电容器活性物质,在三电极体系下研究其电化学性能.使用场发射扫描电子显微镜(FE-SEM)、X射线衍射仪(XRD)、拉曼光谱仪、X射线光电子能谱仪(XPS)和电化学测试等手段,对样品的形貌、结构以及电化学性能进行表征.结果显示:MPCVD法可以合成氧化石墨烯,合成过程不会产生有毒气体,并且合成时间短,生长的氧化石墨烯的形貌结构与传统化学氧化法合成的氧化石墨烯相似.电化学测试表明:氧化石墨烯的比电容在1 A/g具有197 F/g,将电流密度提高到100 A/g,比电容仍有134 F/g,在5 A/g下循环充放电2 000圈,容量保持率为94%.
        Graphene oxide was synthesized by microwave plasma enhanced chemical vapor deposition(MPCVD) on the surface of Ni foam with methyl formate and hydrogen as raw materials.The synthesis temperature was 450 ℃.Then,graphene oxide was used as supercapacitor active material and its electrochemical properties were investigated under three-electrode system.The morphology,structure and electrochemical properties of the samples were characterized by field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD),Raman spectroscopy,X-ray photoelectron spectroscopy and electrochemical test.The results show that graphene oxide can be synthesized by MPCVD.No poisonous gas was produced during the synthetic process and the whole synthetic time was short.The morphology and structure of the graphene oxide synthesized by MPCVD are similar to those of the traditional chemical oxidation method.Electrochemical tests show that the specific capacitance of the graphene oxide is up to 197 F/g at 1 A/g.When the current density is raised to 100 A/g,its specific capacitance is still 134 F/g.The capacitance retention is 94% after 2 000 charge/discharge cycles at 5 A/g.
引文
[1]Georgakilas V,Tiwari J N,Kemp K C,et al.Noncovalent functionalization of graphene and graphene oxide for energy materials,biosensing,catalytic,and biomedical applications[J].Chem Rev,2016,116(9):5464-5519.
    [2]Moussa M,El-Kady M F,Zhao Z,et al.Recent progress and performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes[J].Nanotechnology,2016,27(44):442001.
    [3]Chen D,Feng H,Li J.Graphene oxide:preparation,functionalizatio,and electrochemical applications[J].Chemical Reviews,2012,112(11):6027-6053.
    [4]Xu B,Yue S,Sui Z,et al.What is the choice for supercapacitors:graphene or graphene oxide?[J].Energy&Environmental Science,2011,4(8):2826-2830.
    [5]Dreyer D R,Todd A D,Bielawski C W.Harnessing the chemistry of graphene oxide[J].Chemical Society Reviews,2014,43(15):5288-5301.
    [6]Zabihinpour M,Ghenaatian H R.A novel multilayered architecture of graphene oxide nanosheets for high supercapacitive performance electrode material[J].Syn-thetic Metals,2013,175:62-67.
    [7]Dreyer D R,Park S,Bielawski C W,et al.The chemistry of graphene oxide[J].Chemical Society Reviews,2010,39(1):228-240.
    [8]Wang H,Yu G.Direct CVD graphene growth on semiconductors and dielectrics for transfer-free device fabrication[J].Advanced Materials,2016,28(25):4956-4975.
    [9]Duy L T,Kim D J,Trung T Q,et al.High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars[J].Advanced Functional Materials,2015,25(6):883-890.
    [10]Yamada T,Ishihara M,Kim J,et al.A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature[J].Carbon,2012,50(7):2615-2619.
    [11]Meyer J C,Geim A k,Katsnelson M I,et al.The structure of suspended graphene sheets[J].Nature,2007,446:60-63.
    [12]Chen J,Yao B,Li C,et al.An improved hummers method for eco-friendly synthesis of graphene oxide[J].Carbon,2013,64:225-229.
    [13]Yan Y,Yin Y X,Guo Y G,et al.A sandwich-like hierarchically porous carbon/graphene composite as a highperformance anode material for sodium-ion batteries[J].Advanced Energy Materials,2014,4(8):1301584.
    [14]Zhu Y,Murali S,Cai W,et al.Graphene and graphene oxide:synthesis,properties,and applications[J].Advanced Materials,2010,22(35):3906-3924.
    [15]Kim H K,Kamali A R,Roh K C,et al.Dual coexisting interconnected graphene nanostructures for high performance supercapacitor applications[J].Energy&Environmental Science,2016,9(7):2249-2256.
    [16]Kim H K,Bak S M,Lee S W,et al.Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications[J].Energy&Environmental Science,2016,9(4):1270-1281.
    [17]Li C,Zhang X,Wang K,et al.Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability[J].Advanced Materials,2017,29(7):1604690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700