多谱线拟合-电感耦合等离子体原子发射光谱法测定高纯镍中痕量钴
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-spectral Fitting-Determination of Trace Cobalt in High Purity Nickel by Inductively Coupled Plasma Atomic Emission Spectrometry
  • 作者:严子心 ; 曲景奎 ; 余志辉 ; 宋静 ; 魏广叶
  • 英文作者:YAN Zi-Xin;QU Jing-Kui;YU Zhi-Hui;SONG Jing;WEI Guang-Ye;National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology;Key Laboratory of Green Process and Engineering,Institute of Process Engineering,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:电感耦合等离子体原子发射光谱法 ; 高纯镍 ; ; 多谱线拟合
  • 英文关键词:Inductively coupled plasma atomic emission spectrometry;;High purity nickel;;Cobalt;;Multicomponent spectral fitting method
  • 中文刊名:FXHX
  • 英文刊名:Chinese Journal of Analytical Chemistry
  • 机构:中国科学院过程工程研究所湿法冶金清洁技术国家工程实验室;中国科学院过程工程研究所绿色过程与工程重点实验室;中国科学院大学;
  • 出版日期:2019-03-07
  • 出版单位:分析化学
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金项目(No.51704270);; 中国科学院科技服务网络计划STS计划项目(No.KFJ-STS-ZDTP-040)资助~~
  • 语种:中文;
  • 页:FXHX201903014
  • 页数:6
  • CN:03
  • ISSN:22-1125/O6
  • 分类号:110-115
摘要
采用基体匹配、标准加入和多谱线拟合(MSF)等校正方法进行干扰消除,通过对3种校正方法的比较,建立了MSF-电感耦合等离子体原子发射光谱(ICP-AES)测定高纯镍中痕量钴的分析方法。确定了最优仪器参数为:射频功率1350 W,雾化器流速0.5 L/min,观测距离15 mm,蠕动泵泵速1.0 mL/min。应用基体匹配、标准加入和MSF3种校正方法分别测定了加标高纯镍溶液,当钴加标浓度为0.10和0.20 mg/L、镍浓度为5 g/L时,3种方法均得到较高的回收率(95.0%~102.0%),线性相关系数均大于0.9996,RSD在2.1%~4.6%之间,其中MSF法的线性范围最宽(0.02~0.5 mg/L),检出限最低(0.002 mg/L);当钴加标浓度分别为0.02和0.06 mg/L、镍浓度为15 g/L时,只有MSF法能够得到准确的结果,线性相关系数为0.9999,线性范围为0.02~0.10 mg/L,检出限为0.002 mg/L,回收率为95.0%~105.0%,RSD在3.9%~4.6%之间。采用MSF法测试实际样品的分析结果为0.000154%,与辉光放电质谱(GD-MS)法的结果(0.000149%)基本一致,进一步验证了方法的准确性和精密性。MSF法不仅抗干扰能力强、操作简便、经济实用,且精密度高、检出限低,测量下限(0.0001%)和范围均优于国标原子吸收光谱法(0.001%),为高纯样品中痕量杂质元素的测定提供了重要的方法学手段。
        By comparing the methods of matrix matching and standard addition and multi-spectral fitting(MSF) for elimination of interference,an analytical method for the determination of trace cobalt in high purity nickel by inductively coupled plasma atomic emission spectrometry (ICP-AES) was established. The optimum parameters of the instrument were determined as follows: RF power of 1350 W, atomizer velocity of0.5 L/min,observation distance of 15 mm,and peristaltic pump speed of 1. 0 mL/min. Three calibration methods,matrix matching,standard addition and MSF,were used to determine the standard addition of pure nickel solution. When the standard addition concentrations were 0.10 and 0.20 mg/L,and nickel concentration was 5 g/L,the three methods all could get good recovery. The linear correlation coefficients were all greater than 0.9996,the recoveries were 95.0%-102.0%,and the RSDs were 2.1%-4.6%. The linear range of MSF method was the best (0. 02-0. 5 mg/L) and the detection limit was the lowest (0.002 mg/L). When the standard addition concentrations of nickel were 0.02 and 0.06 mg/L and the nickel concentration was 15 g/L,the results showed that only the MSF method could get accurate results with linear correlation coefficient of0.9999,linear range of 0.02-0.1 mg/L,detection limit of 0.002 mg/L,recoveries of 95.0%-105.0%,and RSDs of 3. 9%-4. 6%. The MSF method was used to test the actual samples. The analytical results were0.000154%,which was consistent with the GD-MS method. The RSD was 2.3%. The accuracy and precision of the method were further verified. MSF method is not only strong in anti-interference,simple in operation,economical and practical,but also has high precision,low detection limit. The lower limit of detection(0.0001%) and detection range are superior to the national standard atomic absorption spectrometry(0.001%). It provides an important methodological method for the determination of trace impurities in highpurity samples.
引文
1 Mukhopadhyay A,Chatterjee D,Mondal C,Punnose S,Gopinath K.Ultrasonics,2018,90:42-51
    2 GB/T 14992-2005,Classification and Designation for Superalloys and High Temperature Intermetallic Materials.National Standards of the People's Republic of China高温合金和金属间化合物高温材料的分类和牌号.中华人民共和国国家标准.GB/T 14992-2005
    3 Shu D L,Tian S G,Liu L R,Zhang B S,Tian N.Mater.Charact.,2018,141:433-441
    4 Song J Y,Sato S,Koizumi Y,Chiba A.Adv.Mater.Res.,2014,922:711-715
    5 ISO 6283:2017 Specifies the Designation and Chemical Composition of Grades of Refinednickel.International Organization for Standardization
    6 ZHANG Liang-Liang,LEI Ya-Ning.Chemical Reagents,2018,40(4):348-352张亮亮,雷亚宁.化学试剂,2018,40(4):348-352
    7 GB/T 8647.6-2006.The Methods for Chemical Analysis of Nickel-Determination of Cadmium,Cobalt,Copper,Manganese,Lead and Zinc Contents-Flame Atomic Absorption Spectrometric Method.National Standards of the People's Republic of China镍化学分析方法镉、钴、铜、锰、铅、锌量的测定火焰原子吸收光谱法.中华人民共和国国家标准.GB/T 8647.6-2006
    8 Chen Z C,Jiang S J.J.Anal.Atom.Spectrom.,2006,21(6):566-573
    9 ISO/TC 155 Nickel and nickelalloys.International Organization for Standardization
    10 ZHAO Jin,HU Jian-Chun.Metallurgical Analysis,2015,35(6):31-34赵琎,胡建春.冶金分析,2015,35(6):31-34
    11 GB/T 26016-2010,High Purity Nickel.National Standards of the People's Republic of China高纯镍.中华人民共和国国家标准.GB/T 26016-2010
    12 LIU Hong-Wei,FU Liang,SUN Ai-Ming,NIE Xi-Du,HU Han-Xiang.Chinese J.Anal.Chem.,2015,43(9):1366-1370刘宏伟,符靓,孙爱明,聂西度,胡汉祥.分析化学,2015,43(9):1366-1370
    13 ZHANG Rui-Lin,FAN Xin,CAO Ji-Xiang,DAI Xue-Qian.Metallurgical Analysis,2017,37(1):66-70张瑞霖,樊鑫,曹吉祥,戴学谦.冶金分析,2017,37(1):66-70
    14 Dvoretskov R M,Karachevtsev F N,Zagvozdkina T N,Mekhanik E A.Inorg.Mater.,2014,50(14):1421-1425
    15 BAO Rui,LI Jian-Qiang,JI Chun-Hong,FAN Hui-Li,SONG Xiu-Hua,CHEN Shan-Shan.Spectrosc.Spect.Anal.,2008,28(6):1390-1393包蕊,李建强,季春红,范慧俐,宋秀华,陈姗姗.光谱学与光谱分析,2008,28(6):1390-1393
    16 ZHAO Min,HE Qian-Feng,GUO Lin,SU Han,LIU Li-Ming,TAN Xiang-Lu,RUI Yang.China Patent,201610545848.1,2016赵敏,贺前锋,郭琳,苏晗,刘丽明,谭湘鲁,芮洋.中国专利,201610545848.1,2016
    17 ZHANG Chao-Yang.Chinese Journal of Spectroscopy Laboratory,2005,22(1):134-136张朝阳.光谱实验室,2005,22(1):134-136
    18 LYU Xin-Lei.Clean Coal Technology,2015,21(5):107-109吕鑫磊.洁净煤技术,2015,21(5):107-109
    19 Cai Z C,Zhang J,Wang Y H.Chem.Engineer.,2013,3:28-30
    20 YU Chao,JIANG Zeng-Hui,WANG Yong-Xi,YU Sheng-Jie.Chinese J.Anal.Chem.,2013,41(11):1782-1783俞超,蒋增辉,汪永喜,喻生洁.分析化学,2013,41(11):1782-1783
    21 Zhu Y,Nakano K,Wang Z,Shikamori Y,Chiba K,Kuroiwa T,Hioki A,Inagaki K.Anal.Sci.,2018,34(6):701-710
    22 XU Gui-Ru,QU Jian-Guo,CHANG Yan,TANG Ai-Ling.Chinese J.Anal.Chem.,2016,44(2):273-280徐桂茹,瞿建国,常燕,唐爱玲.分析化学,2016,44(2):273-280
    23 Luo Y,Cong H X,Zhao Z Q,Hu W Q,Zhou W,He S H.J.Nuclear Radiochem.,2015,37(1):37-40
    24 ZOU Zhi-Min,GUO Hong-Jie,MA Hong-Bo,ZHU Yue-Jin.Metallurgical Analysis,2014,34(7):74-77邹智敏,郭宏杰,马洪波,朱跃进.冶金分析,2014,34(7):74-77
    25 WANG Xue-Ping,YAN Kai.Physical Testing and Chemical Analysis Part B:Chemical Analysis,2017,53:295-298王雪平,闫凯.理化检验-化学分册,2017,53:295-298
    26 LIU Jia,LIU Bing-Bing,HAN Mei,JIA Na,ZHANG Chen-Ling.Spectrosc.Spect.Anal.,2018,38(6):1880-1883刘佳,刘冰冰,韩梅,贾娜,张辰凌.光谱学与光谱分析,2018,38(6):1880-1883

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700