三嗪对CVD石墨烯n型掺杂的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of the Nitrogen-doped CVD Graphene through Triazine
  • 作者:刘颖 ; 戴丹 ; 江南
  • 英文作者:LIU Ying;DAI Dan;JIANG Nan;Shanghai University School of Materials Science and Engineering;Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences;
  • 关键词:CVD石墨烯 ; 三嗪 ; n型掺杂 ; 载流子浓度 ; 表面电阻
  • 英文关键词:CVD graphene;;triazine;;nitrogen-doped;;carrier concentration;;sheet resistance
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:上海大学材料科学与工程学院;中国科学院宁波材料技术与工程研究所;
  • 出版日期:2017-05-02 15:26
  • 出版单位:无机材料学报
  • 年:2017
  • 期:v.32;No.211
  • 基金:浙江省自然科学基金(Q15E020007);; 宁波市自然科学基金(201501HJ-B01248);; 国际科技合作专项(S2015ZR1100)~~
  • 语种:中文;
  • 页:WGCL201705010
  • 页数:6
  • CN:05
  • ISSN:31-1363/TQ
  • 分类号:71-76
摘要
以化学气相沉积(CVD)制备的单层石墨烯为原料,小分子三嗪为掺杂剂,采用吸附掺杂的方式,在低温下对石墨烯实现n型掺杂。利用拉曼光谱(Raman)、X射线光电子能谱分析(XPS)、原子力显微镜(AFM)、紫外分光光度计(UV)和霍尔效应测试仪(Hall)对样品的形貌、结构及电学性能进行表征。结果表明:该方法简单安全,能够对石墨烯实现均匀的n型掺杂,掺杂石墨烯的透光率达到95%。掺杂后石墨烯的特征峰G峰和2D峰向高波数移动。掺杂180 min后,载流子浓度达到4×10~(12)/cm~2,接近掺杂前的载流子浓度,掺杂后的石墨烯在450℃的退火温度下具有可逆能力,其表面电阻在300℃以下具有较好的稳定性。
        Nitrogen-doped graphene(N-graphene) was prepared via molecular doping from sym Triazine molecules at low temperature. The phase structure, morphology and electrical property were characterized by Raman spectroscopy(Raman), X-ray photoelectron spectroscope(XPS), atomic force microscope(AFM), ultraviolet spectrophotometer(UV), and Hall tester. Here the method provides a simple and safe process to grow N-graphene. The morphology of N-graphene retains good uniformity, and the transmittance of the graphene is 95% in the range from 300 nm to 800 nm. The typical graphene peaks G-band and 2D-band both upshift after doping. The hole-carrier concentration is decreased immediately after Triazine decoration. After exposure to Triazine for 3 h, the charge-carrier concentration of N-graphene remains as high as 4×10~(12)/cm~2, which approaching the pristine Chemical Vapor Deposition(CVD) graphene's carrier concentration due to the abundant molecular doping. After N-graphene annealed at 450℃, a hole-carrier concentration of ~8×1012/cm2 can be regenerated. The sheet resistance of N-graphene can stay steady at 300℃. The mechanism of Triazine doping is that Triazine is an electron-rich aromatic molecule due to the incorporation of N atoms in the aromatic ring, and some negative charges are expected to transfer onto the graphene. This research provides a simple method to obtain N-graphene doping for future application in electrical devices.
引文
[1]MATTHEW J A,VINCENT C T,RICHARD B K.Honeycomb carbon:a review of graphene.Chemical Reviews,2009,110(1):132–145.
    [2]ZHOU LIN,ZHANG LIMING,LIAO LEI,et al.Photochemical modification of graphene.Acta Chimica Sinica,2014,72(3):289.
    [3]ALEXANDER A B,SUCHISMITA G,BAO WEN-ZHONG,et al.Superior thermal conductivity of single-layer graphene.Nano Letters,2008.8(3):902–907.
    [4]NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films.Science,2004,306(5696):666–669.
    [5]NOVOSELOV K S,JIANG D,SCHEDIN F,et al.Two-dimensional atomic crystals.Proceed-ings of the National Academy of Sciences of the United States of America,2005,102(30):10451–10453.
    [6]JANNIK C M,GEIM A K,KATSNELSON M I,et al.The structure of suspended graphene sheets.Nature,2007,446(7131):60–63.
    [7]CHANGGU L,WEI XIAO-DING,JEFFREY W K,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene.Science,2008,321(5887):385–388.
    [8]ALEXANDER S M,ROMAN V G,SERGEY V M,et al.Micrometer-scale ballistic transport in en-capsulated graphene at room temperature.Nano Letters,2011,11(6):2396–2399.
    [9]DAS A,PISANA S,SAHA S K,et al.Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor.Nature nanotechnology,2008,3(4):210–215.
    [10]HU YAO-JUAN,JIN JUAN,ZHANG HUI,et al.Graphene:synthesis,functionalization and applications in chemistry.Acta Phys.-Chim.Sin.,2010,26(8):2073–2086.
    [11]HU RONG-YAN,JIA KUN-PENG,CHEN YANG,et al.Research progress of graphene doping.Micronanoelectronic Technology,2015,52(11):692–700.
    [12]ISABELLA G,CHRISTIAN R,CHRISTIAN R A,et al.Atomic hole doping of graphene.Nano Letters,2008,8(12):4603–4607.
    [13]JURGEN R.Surface transfer doping of semiconductors.Science,2006,313(5790):1057–1058.
    [14]ZHANG WEN-JING,LIN CHENG-TE,LIU KENG-KU,et al.Opening an electrical band gap of bilayer graphene with molecular doping.ACS Nano,2011,5(9):7517–7524.
    [15]WEI PENG,LIU NAN,LEE H R,et al.Tuning the Dirac point in CVD-grown graphene through solution processed n-type doping with2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1 H-benzoimidazole.Nano Letters,2013,13(5):1890–1897.
    [16]DAMON B F,ROKSANA G M,LIN YU-MING,et al.Chemical doping and electron-hole conduction asymmetry in graphene devices.Nano Letters,2008,9(1):388–392.
    [17]JUSTIN B B,RYAN C,CRAIG L P,et al.Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films.ACS Nano,2013,7(8):7251–7261.
    [18]ZHANG WEN-JING,LIN CHENG-TE,LIU KENG-KU,et al.Opening an electrical band gap of bilayer graphene with molecular doping.ACS Nano,2011,5(9):7517–7524.
    [19]USACHOV D,VILKOV O,GRUNEIS A,et al.Nitrogen-doped graphene:efficient growth,structure,and electronic properties.Nano Letters,2011,11(12):5401–5407.
    [20]DATTATARY J L,URMIMALA M,PANCHAKARLA L S,et al.Temperature effects on the Raman spectra of graphenes:dependence on the number of layers and doping.Journal of Physics:Condensed Matter,2011,23(5):055303.
    [21]SHAO YU-YUAN,ZHANG SHENG,LIU JUN,et al.Nitrogen-doped graphene and its electrochemical applications.Journal of Materials Chemistry,2010,20(35):7491–7496.
    [22]GUPTA A,CHEN G,JOSHI P,et al.Raman scattering from high-frequency phonons in supported n-graphene layer films.Nano Letters,2006,6(12):2667–2673.
    [23]FERRAR A C,MEYER J C,SCARDACI V,et al.Raman spectrum of graphene and graphenelayers.Physical Review Letters,2006,97(18):187401.
    [24]CANCADO L G,TAKAI K,ENOKI T,et al.General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy.Applied Physic Letters,2006,88(16):163106–1–3.
    [25]JIANG LI-LI,LU XIONG.Graphene applications in solar cells.Journal of Inorganic Materials,2012,27(11):1129–1137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700