基于时滞模糊灰色认知网络的铁矿沉铁过程建模方法(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling of goethite iron precipitation process based on time-delay fuzzy gray cognitive network
  • 作者:陈宁 ; 周佳琪 ; 彭俊洁 ; 桂卫华 ; 戴佳阳
  • 英文作者:CHEN Ning;ZHOU Jia-qi;PENG Jun-jie;GUI Wei-hua;DAI Jia-yang;School of Information Science and Engineering, Central South University;
  • 关键词:沉铁过程 ; 模糊灰色认知网络 ; 时滞 ; 非线性Hebbian学习
  • 英文关键词:time-delay fuzzy gray cognitive network(T-FGCN);;iron precipitation process;;nonlinear Hebbian learning
  • 中文刊名:ZNGY
  • 英文刊名:中南大学学报(英文版)
  • 机构:School of Information Science and Engineering, Central South University;
  • 出版日期:2019-01-15
  • 出版单位:Journal of Central South University
  • 年:2019
  • 期:v.26
  • 基金:Project(61673399)supported by the National Natural Science Foundation of China;; Project(2017JJ2329)supported by the Natural Science Foundation of Hunan Province,China;; Project(2018zzts550)supported by the Fundamental Research Funds for Central Universities,China
  • 语种:英文;
  • 页:ZNGY201901005
  • 页数:12
  • CN:01
  • ISSN:43-1516/TB
  • 分类号:67-78
摘要
针铁矿沉铁过程是由多个连续反应器级联,并且包含氧化反应、还原反应以及中和反应等一系列复杂化学反应的复杂过程,具有强非线性、不确定性及大时滞性等特点,难以建立精确的数学模型。本文提出了一种基于T-FGCN(Time-delay Fuzzy Gray Cognitive Network,T-FGCN)的针铁矿沉铁过程的建模方法。根据过程机理、专家经验和历史数据,建立针铁矿沉铁系统的T-FGCN模型,利用带终端约束的非线性Hebbian学习算法(Nonlinear Hebbian Learning,NHL)对模型权值进行学习。通过在不同程度上的不确定性环境下对系统进行分析,结果表明,T-FGCN建模方法能在不确定性高的环境下对具有大时滞的工业系统进行较为精确的模拟,系统稳定状态值能收敛到一个灰度为零或者灰度很小的灰数平衡点。
        The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions, such as oxidation reaction, hydrolysis reaction and neutralization reaction. It is hard to accurately establish a mathematical model of the process featured by strong nonlinearity, uncertainty and time-delay. A modeling method based on time-delay fuzzy gray cognitive network(T-FGCN) for the goethite iron precipitation process was proposed in this paper. On the basis of the process mechanism, experts' practical experience and historical data, the T-FGCN model of the goethite iron precipitation system was established and the weights were studied by using the nonlinear hebbian learning(NHL) algorithm with terminal constraints. By analyzing the system in uncertain environment of varying degrees, in the environment of high uncertainty, the T-FGCN can accurately simulate industrial systems with large time-delay and uncertainty and the simulated system can converge to steady state with zero gray scale or a small one.
引文
[1]LI Dong-bo,JIANG Ji-mu.Present situation and development trend of zinc smelting technology at home and abroad[J].China Metal Bulletin,2015(6):41-44.(in Chinese)
    [2]XIE Y F,XIE S W,LI Y G,YANG C H,GUI W H.Dynamic modeling and optimal control of goethite process based on the rate-controlling step[J].Control Engineering Practice,2017,58:54-65.
    [3]CHEN Ning,FAN Yong,GUI Wei-hua,YANG Chun-hua,JIANG Zhao-hui.Hybrid modeling and control of iron precipitation by goethite process[J].Chinese Journal of Nonferrous Metals,2014,24(1):254-261.(in Chinese)
    [4]ANNINOU P A,GROUMPOS P P.Modeling of Parkinson’s disease using fuzzy cognitive maps and non-Linear Hebbian learning[J].International Journal on Artificial Intelligence Tools,2014,23(5):1450010-1450026.
    [5]FATAHI S,MORADI H.A fuzzy cognitive map model to calculate a user's desirability based on personality in e-learning environments[J].Computers in Human Behavior,2016,63:272-281.
    [6]OBIEDAT M,SAMARASINGHE S.A novel semiquantitative Fuzzy Cognitive Map model for complex systems for addressing challenging participatory real life problems[J].Applied Soft Computing,2016,48:91-110.
    [7]JIANG Zhao-hui,LI Xue-ming,GUI Wei-hua.All parameters adaptive predictive control strategy for long time-delay system[J].Journal of Central South University(Science and Technology),2012,43(1):200-206.(in Chinese)
    [8]WANG Y Y,CHEN J W,GU L Y,LI X D.Time delay control of hydraulic manipulators with continuous nonsingular terminal sliding mode[J].Journal of Central South University,2015,22(12):4616-4624.
    [9]CHEN F W,LIU T.Iterative identification of discrete-time output-error model with time delay[J].Journal of Central South University,2017,24(3):647-654.
    [10]BOURGANI E,STYLIOS C D,MANIS G,GEORGOULOSV C.Integrated approach for developing timed fuzzy cognitive maps[C]//7th IEEE International Conference on Intelligent Systems.2015,322:193-204.
    [11]NEOCLEOUS C,SCHIZAS C N.Modeling socio-politicoeconomic systems with time-dependent fuzzy cognitive maps[C]//IEEE International Conference on Fuzzy Systems.2012,19:1-7.
    [12]PARK K S,KIM S H.Fuzzy cognitive maps considering time relationships[J].International Journal of HumanComputer Studies,1995,42(2):157-168.
    [13]BOURGANI E,STYLIOS C D,MANIS G,GEORGOULOSV C.Timed fuzzy cognitive maps for supporting obstetricians’decisions[J].IFMBE Proceedings,2015,45:753-756.
    [14]LEE I K,KWON S H.Learning rule for time delay in fuzzy cognitive maps[J].IEICE Transactions on Information&Systems,2010,93(11):3153-3157.
    [15]ZHANG W,LIU L,ZHU Y C.Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises[J].Expert Systems with Applications,2008,35(4):1583-1592.
    [16]ZHANG J Y,LIU Z Q,ZHOU S.Dynamic domination in fuzzy causal networks[J].IEEE Transactions on Fuzzy Systems,2006,14(1):42-57.
    [17]KHEIRANDISH A,MOTLAGH F,SHAFIABADY N,DAHARI M,WAHAB A K A.Dynamic fuzzy cognitive network approach for modelling and control of PEM fuel cell for power electric bicycle system[J].Applied Energy,2017,202:20-31.
    [18]KOTTAS T L,BOUTALIS Y S,CHRISTODOULOU M A.Fuzzy cognitive network:A general framework[J].Intelligent Decision Technologies,2007,1(4):183-196.
    [19]KOTTAS T,STIMONIARIS D,TSIAMITROS D,KIKIS V,BOUTALIS Y,DIALYNAS E.New operation scheme and control of Smart Grids using Fuzzy Cognitive Networks[C]//IEEE Power Tech Eindhoven Conference.2015,151:1-5.
    [20]DENG Ju-long.Gray system(Society*Economy)[M].Beijing:National Defense Industry Press,1985:36-105.(in Chinese)
    [21]JI Pei-rong.Unbiased gray prediction model[J].Journal of Systems Engineering and Electronics,2000,22(6):78-80.(in Chinese)
    [22]JI Pei-rong.Research on the characteristics of gray prediction model[J].System Engineering-Theory&Practice,2001,9:105-108.(in Chinese)
    [23]MA X,LIU Z.Application of a novel time-delayed polynomial grey model to predict the natural gas consumption in China[J].Journal of Computational&Applied Mathematics,2017,324:17-24.
    [24]DING S,DANG Y G,LI X M,WANG J J,ZHAO K.Forecasting Chinese CO2 emissions from fuel combustion using a novel grey multivariable model[J].Journal of Cleaner Production,2017,162:1527-1538.
    [25]PAPAGEORGIOU E I,STYLIOS C D,GROUMPOS P P.Active Hebbian learning algorithm to train fuzzy cognitive maps[J].International Journal of Approximate Reasoning,2004,37(3):219-249.
    [26]WU K,LIU J.Robust learning of large-scale fuzzy cognitive maps via the lasso from noisy time series[J].Knowledge-Based Systems,2016,113:23-38.
    [27]NATARAJAN R,SUBRAMANIAN J,PAPAGEORGIOU EI.Hybrid learning of fuzzy cognitive maps for sugarcane yield classification[J].Computers and Electronics in Agriculture,2016,127:147-157.
    [28]CHEN Ning,PENG Jun-jie,WANG Lei,GUO Yu-qian,GUIWei-hua.Fuzzy grey cognitive networks modeling and its application[J].Acta Automatica Sinica,2018,44(7):1227-1236.(in Chinese)
    [29]CHEN Ning,WANG Lei,PENG Jun-jie,LIU Bo,GUIWei-hua.Improved nonlinear Hebbian learning algorithm based on fuzzy cognitive networks model[J].Control Theory and Applications,2016,33(10):1273-1280.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700