基于鱼类活动电位功率频谱密度的水质监测方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Water quality monitoring based on power spectral density of fish activity electrical potential
  • 作者:徐敏 ; 陆瑞珏 ; 杨凌升
  • 英文作者:XU Min;LU Ruiyu;YANG Lingsheng;Research Center of Applied Electromagnetics, Nanjing University of information Science & Technology;Jiading Shanghai Tap Water Co.Ltd.;
  • 关键词:鱼类 ; 活动电位 ; 功率频谱密度 ; 水质监测 ; 毒物
  • 英文关键词:fish;;activity electrical potential;;power spectral density;;water monitoring;;toxicants
  • 中文刊名:AHDX
  • 英文刊名:Journal of Anhui University(Natural Science Edition)
  • 机构:南京信息工程大学应用电磁学研究中心;上海市嘉定自来水有限公司;
  • 出版日期:2018-12-11 14:41
  • 出版单位:安徽大学学报(自然科学版)
  • 年:2019
  • 期:v.43
  • 基金:国家自然科学基金资助项目(41401572);; 江苏省优势学科资助项目
  • 语种:中文;
  • 页:AHDX201902013
  • 页数:7
  • CN:02
  • ISSN:34-1063/N
  • 分类号:94-100
摘要
鱼类监测技术已普遍应用于水质监测预警体系中.在原有利用鱼的活动电位变化监测有毒物质方法的基础上,以鱼类活动电位的功率频谱密度测量取代原有的电压测量.通过分析鱼类活动所产生的电位与频率的对应关系,进而将鱼类活动电位细分为呼吸电位和游泳电位等.再将各类活动功率在鱼类运动总功率中所占比值的变化作为毒物投入后鱼类运动行为的变化判断标准.最后以青鳉鱼(Oryzias latipes)作为氰化物和杀螟硫磷的实验生物,进而检测鱼类监测系统的灵敏性和污染判定依据的准确性.
        Fish monitoring technique has been widely used in water quality monitoring and early warning system. The change of fish activity electrical potential power spectrum was used instead of the change of traditional fish activity electrical potential to monitor the water condition. In this way, the fish activity electrical potential was related with the frequency. Then the data could be accurately distinguished into respiratory electrical potential and swimming electrical potential etc. By using the change of the ratio of various activity powers to the total power, a standard to reflect the change of fish activity was established after the water was polluted by the toxicants. By using Oryzias latipes as the biological indicators of cyanide and fenitrothion, the sensitivity of the designed monitoring system and the accuracy of the pollution criteria can be tested.
引文
[1] 徐亮, 钟声. 水质毒性检测仪在水环境污染应急监测中的应用[J]. 污染防治技术, 2009, 22 (3): 99-100.
    [2] COSTAN G, BERMINGHAM N, BLAISE C. A novel index to assess and compare the toxic potential of industrial effluents, potential ecotoxic effects probe (PEEP)[J]. Environmental Toxicology and Water Quality, 1993, 8 (2): 115-140.
    [3] BLAISE C , FéRARD J F. Overview of contemporary toxicity testing[M]//BLAISE C, FéRARD J F. Small-Scale Freshwater Toxicity Investigations: Volume 2. Dordrecht, Netherlands: Springer, 2005.
    [4] 张俊强, 魏建军, 张杨. 毒性检测系统与给水水质预警[J]. 中国给水排水, 2007 (16): 79-80.
    [5] U. S. Environmental Protection Agency. Technical overview of ecological risk assessment-analysis phase: ecological effects characterization[DB/OL]. [2017-01-19]. https: //www. epa. gov/pesticide-science-and-assessing-pesticide-risks/technical-overview-ecological-risk-assessment-0.
    [6] 沈芾, 陈再忠. 鱼类监测系统及预警鱼类的选择[J]. 水产科技情报, 2009, 36 (5): 217-220, 224.
    [7] 方战强, 陈中豪, 胡勇有, 等. 发光细菌法在水质监测中的应用[J]. 河南科技, 2013, 8 (2): 56-58 .
    [8] 曾甜玲, 温志渝, 温中泉, 等. 基于紫外光谱分析的水质监测技术研究进展[J]. 光谱学与光谱分析, 2013, 33 (4): 1098-1103.
    [9] S?DERSTR?M H, LINDBERG R H, FICK J. Strategies for monitoring the emerging polar organic contaminants in water with emphasis on integrative passive sampling[J]. Journal of Chromatography A, 2009, 1216 (3): 623-630.
    [10] MARADONA A, MARSHALL G, MEHVRA M, et al. Utilization of multiple organisms in a proposed early-warning biomonitoring system for real-time detection of contaminants: preliminary results and modeling[J]. Journal of Hazardous Materials, 2012, 219/220: 95-102.
    [11] BORCHERDING J. Ten years of practical experience with the dreissena-monitor, a biological early warning system for continuous water quality monitoring[J]. Hydrobiologia, 2006, 556 (1): 417-426.
    [12] COLIN A S, BOZENA S S, RASMUS B H, et al. A potential approach for monitoring drinking water quality from groundwater systems using organic matter fluorescence as an early warning for contamination events[J]. Water research, 2011, 45 (18): 6030-6038.
    [13] KHATIBISEPEHR S, HUANG B, IBRAHIM F, et al. Data-based modeling and prediction of cytotoxicity induced by contaminants in water resources[J]. Computational Biology and Chemistry, 2011, 35 (2): 69-80.
    [14] 沈芾, 孙杰, 孔令富, 等. 几种小型淡水观赏鱼对重金属的敏感性比较[J]. 水产科技情报, 2012, 39 (1): 15-17.
    [15] 横田陆郎, 王黎, 唐川钟, 等. 毒性物质的快速生物监测方法与应用[J]. 沈阳化工大学学报, 2010, 24 (3): 283-288.
    [16] BIRUNGI Z, MASOLA B, ZARANYIKA M F, et al. Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria[J]. Physics and Chemistry of the Earth, 2007, 32 (15): 1350-1358 .
    [17] MORGAN E L, GEORGE D B, THIRUNAVUKKARASU N, et al. Using artificial intelligence to detect fish breathing stress in remote automated biosensing for coordinated watershed monitoring networks[J]. SIL Proceedings, 2009, 30 (6): 971-976.
    [18] 邹一平, 王磊, 洪鼎宙. 利用鱼的活动电位变化监测绥中有毒物质的方法: 1866000[P]. 2006-11-22.
    [19] BUTTERWORTH F M, GUNATILAKA A, EUGENIA GONSEBATT M. Biomonitors & biomarkers as indicators of environmental change Ⅱ[M]. America: Springer Science and Business Media, LLC, 2001: 1-508.
    [20] MORGAN W S G, KUHN P C. A method to monitor the effects of toxicants upon breathing rate of largemouth bass[J]. Water Research, 1974, 8: 66-67.
    [21] MAZUO Y. Experiment of acute toxicant monitoring by observing action potentials in crucian carp gills[J]. Water Service Association Magazine, 1985, 54 (10): 17-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700